

The

Barren Realms Builder’s Guide

v 2.0

written and compiled by:

Faustus

with special thanks to:

Kiri, Temper, Delton, Matai,
Mazrim, Brand, Ahab,

and Kytar

(for contributing to the previous version
of this guide, making this new version

much easier to create.)

Visit us at: barren.coredcs.com 8000

 Original DIKU code by: Hans Henrik Staerfeldt,
 Katja Nyboe, Tom Madson,

Michael Seifert, and
Sebastian Hammer

Original MERC code by: Kahn, Hatchet, and Furey
 BR Supplemental code by: The BARREN REALMS Coding Crew

Part I
before you begin your new area

Barren Realms has been around since 1994. In that time it has constantly grown and developed, mainly
through the contributions of the players who have volunteered their time and energy to making Barren
Realms a better place. One of the ways that players like you can help to add to the Barren Realms
experience is by building an area. Anyone can create an area. You don’t need any programming experience
of any special tools. All that it takes is a little creativity, dedication, and drive.

This guide is designed to help anyone who wishes to write and area for the mud. It is primarily intended
to help someone who wants to use a text editor to create their area file, as opposed to one of the off-line
building programs available on the internet. (Barren Realms does not offer on-line building and there are
no plans to add this feature.) Even if you are planning to use something other than a text editor to build
your area, you should read through this guide, as there is plenty of good information contained herein
that can be applied to all builders.

If the idea of creating an area sounds appealing to you, ask yourself the following question: Why do I
want to make an area?

There are several possible answers you might come up with. If your answer is something like:

 -I want to be in a position of power on the mud and building an area will help me to get there.
 -I want to create an area that has equipment far more powerful than anything else on the mud.

perhaps you should reconsider. Building an area will not directly net your character any benefits or
promotions on the mud. Likewise, the area you write will be checked to ensure balance with the rest of
the mud so things do not become to easy.

On the other hand, you might answer that question with something like:

 -I want to try a new way of expressing myself creatively.
 -I have an interesting idea that I think would enhance the mud.

by all means, give it a try. We welcome any contribution that you could provide for us.

Also, keep in mind that Barren Realms is a fantasy-themed mud. We are only interested in area that fit
well in a fantasy theme. Even though you might like to create one very badly, we will not accept any areas
that contain modern elements, sci-fi elements, or anything that does not fit with the mud. This does not
mean that you can only have dragons, ogres, and fairy-tale creatures in your area. It just means that your
area cannot contradict any fantasy elements.

Once you’ve decided that you do want to create an area, start to think about the following details for
your area:

What is the theme of your area? What kind of things will a player encounter there?
Where is the area located? What can be found in the surroundings or your area?
What kind of npc’s will populate your area? Who will players find there?
What are some of the major features of the area? What is the terrain like? Are there any significant

landmarks?
How large and spread out will your area be? Will all of the rooms be tightly packed together, or

will there be lots of empty space in the map? (Don’t make the area overly large, especially
if this is your first try.)

After you’ve thought about the details for your area, you’ll need put together a brief proposal for your area.
Be sure to include the following information in your proposal:

The name of your character on Barren Realms
Your e-mail address
A brief description of the theme of your area, and, if possible, a name for the area
A general idea of what the terrain of your area is like
An approximation of where in the mud your area will be located
The level range for which your area is intended
Pro’s and con’s of the area (what will your area add to the mud? what will make your area a

challenge for players?)
An approximate number of rooms that you will

need for the area (a high guess is better
than a low guess)

and, if possible, a sample description for one
room, one mob, and one object for your
area

Send this proposal to Kiri. (You can find her e-mail
address by profiling her on Barren Realms.) You
should receive a response shortly. If everything looks
good, your idea will be approved and your will receive
vnums** that you can use to start writing your area.
If we feel that your idea doesn’t quite work for some
reason, we’ll let you know what you should change
before you re-submit things. We might ask you to
change your level range, or we might not currently
need an area with the theme that you are proposing.
Whatever the problems might be, we will work with
you to develop your idea into one that works well for
the mud.

Once you have received approval for your area, there

**What are vnums? If you are new to building
you might be a bit confused when I mentioned
‘vnums’ above. Vnums are the ID numbers
that identify each unique mob, object, and room
in your area. When you are working on an
area, you will be assigned a specific range of
vnums, say for example, 1001 through 1100.
Each number in that range can be used for 1
mob, 1 object, and 1 room. Thus, you can have
a room with the ID number 1015 as well as an
object with the ID number 1015 and a mob with
the ID number 1015. You cannot, however have
another object with that number. An ID number
used for a mob is generally called an ‘mnum’.
An ID number used for an object is often called
an ‘onum’. An ID number used for a room is
usually called an ‘rnum’.
Most areas have more rooms than they have
objects or mobs. That’s why we want an idea
of how many rooms your area will have. That
way, we can be sure that we are assigning you a
sufficient number of vnums.

are a few more things to do before you sit down and type out the area file. If you haven’t done so yet,
map the area out on a piece of graph paper. Creating a map ahead of time will make writing the area
file much easier. Also, jot down some notes about the mobs and objects you want to include in the area.
You don’t have to have full details about everything that will be found in the area at this point, but at
least start thinking about these things.

Then, once everything is in order, you’re set to write out the area file. See Part II for details on how
to write the area file.

Part II
writing the area file

This section will walk you through each of the sections that you need to write for the area file. The file
itself is a basic text file. You can create the file in any word processing program or text editor. Whatever
program you use, though, make sure it is capable of saving files in a plain text format. Most, if not all word
processors will give you the option to “save as text only’ when you are in the program’s save screen. If you
save your file as anything other than plain text, there will be extra formatting information that can confuse
and crash the mud. Always save your area file as a text only document.

As you type out the area file, try not to let the text wrap from one line to the next. If you are typing
something that is going to spill over onto a new line, be sure to hit return before the text reaches the
right edge of the file. Then, continue with what you were typing on the next line. This will keep things
formatted correctly on the mud. No line should have more than 75 characters. Also, try and type the file in
a mono-spaced font. That will also help you to format things correctly.

The area file itself is broken into eight different sections, as follows:

 #AREA
 #HELPS
 #MOBILES
 #OBJECTS
 #ROOMS
 #RESETS
 #SHOPS
 #SPECIALS

Each of these sections goes into one area file in the order listed above. The following pages will detail
each of those items in depth.

 Area

The line that starts your area file is where you set the area’s name as well as the level range for which it is
intended. The line should be written as follows:

#AREA {<level range>} <your name> <area title>~

As an example, I could start an area with the following:

#AREA	{	0	15}	Faustus	The	Tavern~

Be sure to use brackets (like this ‘{}’) and not parenthesis around the level range. This way, your area will

be consistent with all the other areas in the area list. Also, since the name of your area is a title, you should
be sure to capitalize any and all important words.

The symbol at the end of this line is called a tilde (~). It is a very important symbol that appears often
throughout the area file. The symbol tells the mud that certain lines are finished. In these instructions,
pay special attention to where tildes are placed. The mud will always expect a tilde to be in that spot and
will probably crash if you omit any tilde.

 Helps

The next section of your area file is where you can include any help files, should you desire. Some writers
like to create a help file that details the specifics of their area. Other like to use help files to include
interesting or bizarre messages for the players.

The first line of the helps section should be typed as follows:

	 #HELPS

After that, use the following sets of lines for each help file your wish to include.

Line A: -<level>
 The level (which should be typed with numerals) determines how high of a level a player will need
to be in order to read the help file. If you want everyone to be able to read the help file, use -0 on this line.
For hero and immortal only help files, put -51 here. If you wish to reserve the help file for the immortals
only, use -152. You can also set minimum level to any number in between.
 For my example, I’d like everyone to be able to read the file, so I’ll put:
 -0

Line B: <keywords>~
 The keywords specify what a player has to type in order to see the help file. You can include one
single keyword, or you could make a short list of several available keywords. For my example, I’ll use:

 sample	area~

Thus anyone who types ‘help sample’ or ‘help area’ will see the this help file. Be sure to include the
tilde at the end of the line.

Line C: <help file>
 Here you will type out the text that you want players to see when they request this particular help
file. You can type more than one line, but be sure to hit return at the end of each individual line. I’ll
continue my example with:

	 This	is	a	sample	area	that	Faustus	has	put	together	for	the	area	writing
	 guide.		Hopefully,	this	file	will	allow	you,	too,	to	create	areas	that
	 we	can	use	to	make	Barren	Realms	an	even	better	place.

That message will be displayed to anyone who types ‘help sample’ or ‘help area’.

Line D: ~
 On the line following the text of your help file, simply type a single tilde all by itself.

If you wish to include more than one help file, just repeat lines A through D once again. You may include
as many help files as you wish.

On the line after the ending tilde of your last help file, type the following:

 0	$~

That tells the mud that you are finished with the Helps section.

If you do not wish to include any help files, you mush still type ‘#HELPS’ on one line, and follow it
with ‘0 $~’ on the next line.

Once everything is put together, your Helps section should look something like this:

#HELPS
-0
sample	area~
This	is	a	sample	area	that	Faustus	has	put	together	for	the	area	writing
guide.		Hopefully,	this	file	will	allow	you,	too,	to	create	areas	that
we	can	use	to	make	Barren	Realms	an	even	better	place.
~
-152
secret~
This	information	is	for	immortals	only.		It’s	so	secret	that	I	can’t	even
type	what	it	really	is,	for	fear	that	is	might	fall	into	the	wrong	hands.
~
0	$~

 Mobiles

The mobiles section is where you create the details of all of the people, creatures, animals, spirits, etc. that
will inhabit your area. This is probably the easiest of all the major sections in your area file to write.
As long as you follow the guidelines about which special characters go where, you’ll be fine. Since this
part of the file is relatively easy, take the time to do a good job. Make your mobs original and put as
much detail into them as you can. How interesting your mobs are corresponds directly to how much
work you put into them. Spending a few extra minutes to make truly noteworthy descriptions for your
mobs will pay off in the end.

The first line of the mobiles section of your area file must consist of the following printed on a line all
by itself: #MOBILES (in capitals with no other punctuation). When the mud reads your area file, this is

how it knows where to find the mobs.

All of your mobs will follow that line, and each individual mob will follow the same pattern of lines.

Line A: #<mnum>
 This tells the mud what id number the mob will have. Start with the first vnum you have been
assigned. For each new mob that you add, continue in numerical order until you run out of mobs that you
want to include. I’ll start an example mob with ‘#101’.

Line B: <keywords>~
 This line specifies the word (or more commonly, the group of words) that a player can use to
interact with the mob. There is no limit to the number of keywords a mob can have, and generally the
more it does have, the better. Be sure to include the tilde after the last keyword in the list. For my
example mob, I’ll write this line as ‘guard	elf	elven	young~’. Do not include any articles such as a,
an, or the on this line.

Line C: <short description>~
 The mud displays the short description as part of a longer sentence whenever a mob enters or leaves
a room, and whenever a players interacts with the mob. The short description should just be a noun or two,
along with any appropriate adjectives and articles, such as a, an, or the. I’ll continue my example with the
line ‘a	young	elven	guard~’. Do not capitalize this line, and do not use any sort of ending punctuation.
Do be sure to include the tilde, though.

Line D: <long description>
 The long description is a message that is displayed after the room description whenever a player
enters a room or types look. This message alerts the player to the mob’s presence. It always appears
on its own line, so be sure that you write the long description as a complete sentence, including proper
punctuation and ending punctuation. For my example, this line will look like ‘A	young	elf	stands	here,	
watching	over	the	hallway.’ with no tilde at the end.

Line E: ~
 This line needs to be a single tilde all by itself.

Line F: <look description>
 The look description can (and should) actually be more than one single line. This is the description
that is shown when a player actually looks at the mob. Assuming your description spills over onto more
than one line (and it should), be sure to hit return before your words drop down onto the next line. This
will prevent the mud from doing ugly things with word wrap. The look description of my example mob
will look like this:

An	elf	with	sandy	blond	hair	paces	back	and	forth	along	the	hallway.		Every
few	steps,	he	stops	and	swivels	his	head	from	side	to	side.		Sighing,	he
places	his	hand	over	the	hilt	of	his	sword	and	continues	pacing.

You’ll probably be using more than one sentence here. Be sure all of them are capitalized and punctuated
properly.

Line G: ~
 This line comes right after the last line of the mob’s look description. All you need in a tile by itself.

Line H: <act bits> <affect bits> <alignment> S
 This line will contain a bunch of numbers. Act bits determine any special sets of behavior that
the mob might have. These can be found in TABLE A. Feel free to assign more than one act bit to you
mob, but be sure to separate them with the | character. Affect bits determine any spells effects that will be
permanently assigned to the mob. You can find the different affect bits in TABLE B. Again, you can use
more than one affect bit, as long as you use a | to separate them. If you chose not to use any act bits or
affect bits, just put a 0 in one or both of those spots. Alignment is a numerical value that falls between 1000
and -1000. Remember, high numbers mean good, low numbers mean evil. Finally, the S at the end of the
line has no real meaning on the mud. Farther back in mud history, that spot was important, but our code
just ignores it. If that S isn’t there, though, the mud gets upset and crashes. Don’t forget it. My example
mob will have the following values written on this line: ‘1|4|32	4|8	500	S’. This means that it is an NPC,
it will pick up objects off of the floor, it is aggressive, and it is affected by detect evil and detect invisible.
Its alignment is 500, meaning that it is good aligned.

Line I: <mob level> 0 0 0d0+0 0d0+0
 Mob level is, as you would expect, the level of the mob you wish to create. When the mob loads
into the mud, its level will be within two of whatever number you assign here. All of those zeroes after the
mobs level are needed, even though the mud never actually bothers to read those numbers. For my example
mob, this line will be ‘20	0	0	0d0+0	0d0+0’. The mob will always load between levels 18 and 22.

Line J: 0 0 0 0 <gender>
 The first four zeroes are ignored, but needed. For the last number, use 1 for male mobs, 2 for female
mobs, and 0 for neuter mobs. Those are the only options you have on this line. I’ll finish up with this line
as: ‘0	0	0	0	1’, meaning that my mob is male.

That’s it. At this point we have a complete mob. On the line next line, you can start over again at Line
A with the next vnum for the next mob. If you have finished that last of the mobs for your area, type
the following on the line immediately following the gender of your last mob: #0 That signifies that the
#MOBILES section is done.

Putting all of my example lines together, we get the following, which gives you an approximation of what
the #MOBILES section will look like:

#MOBILES
#101
guard	elf	elven	young~
a	young	elven	guard~
A	young	elf	stands	here,	watching	over	the	hallway.
~
An	elf	with	sandy	blond	hair	paces	back	and	forth	along	the	hallway.		Every
few	steps,	he	stops	and	swivels	his	head	from	side	to	side.		Sighing,	he
places	his	hand	over	the	hilt	of	his	sword	and	continues	pacing.
~
1|4|32	4|8	500	S
20	0	0	0d0+0	0d0+0
0	0	0	0	1
#102
etc.	etc.	etc.
#0

TABLE A - ACT BITS FOR MOBS

ACT BIT
NPC 1
SENTINEL 2
SCAVENGER 4
MEMORY 8
ILLITHID PRACTICE 16
AGGRESSIVE 32
STAY AREA 64
WIMPY 128
PET 256
ENHANCE 512
ELF PRACTICE 1024
HEALER 2048
UNDEAD 4096
DRUID PRACTICE 8192
KENDER PRACTICE 16384
HUMAN PRACTICE 32768
DWARF PRACTICE 65536
IDENTIFY 131072
REPAIR 262144
SELL MID 524288
SELL MID-HIGH 1048576
SELL HIGH 2097152
STAY TERRAIN 8388608
AVIAN PRACTICE 16777216

notes:

All mobs should be set with the NCP bit.
SENTINEL mobs will not wander around at all.
SCAVENGER mobs will pick up any objects on the

ground.
If a mob has MEMORY, it will remember any player

that has attacked it and fled, and will attack that
player on sight.

The various PRACTICE mobs will train skills that
correspond to the specified race.

AGGRESSIVE mobs will attack any player lower
than them in level.

STAY AREA mobs will not leave your area. This
must be used if the rooms that connect your area
to other areas are not set to be no-mob rooms.

If any of your mobs will be sold in a pet shop, set
those mobs with the PET bit.

Mobs that have the ENHANCE bit can enhance a
player’s stats for the appropriate price.

HEALER mobs will heal all characters for a price.
When a player fights an UNDEAD mob, the mob’s

arms and legs may be lopped off and continue to
fight on their own.

A mob set with IDENTIFY will, for a price, identify
any object that a player gives them.

A REPAIR mob can fixed damaged equipment for a
small fee.

SELL MID, SELL MID-HIGH, and SELL HIGH are used in conjunction with shopkeeper mobs. These
bits will set the levels of items that load into the inventories of these shopkeepers to 10, 20, or
30, respectively.

Mobs with STAY TERRAIN will not wander off of the terrain type of the room where the start out.
(Terrain type is set in the #ROOMS section.) This is useful for confining certain mobs to specific
portions of your area.

 Be aware that any mob set with a HEALER, REPAIR, IDENTIFY, ENHANCE, or
 PRACTICE bit will be protected and players will be unable to kill that
 mob.

MOB TABLES

TABLE B - AFFECT BITS FOR MOBS

AFFECT BIT
BLIND 1
INVISIBLE 2
DETECT EVIL 4
DETECT INVIS 8
DETECT MAGIC 16
DETECT HIDDEN 32
SANCTUARY 128
FAERIE FIRE 256
INFRARED 512
CURSE 1024
POISON 2048
PROTECTION 4096
SNEAK 32768
HIDE 65536
SLEEP 131072
FLY 524288
PASS DOOR 1048576
PLAGUE 2097152
VISION 4194304
DIRT KICK 16777216
VERTIGO 33554432
FIRM GRASP 67108864

Each of these will permanently give the mob the effects
of the spell listed. Most are self explanatory, and if you
need any extra information, you can find them in the help
files on the mud.

Note that shopkeepers, identifiers, repairmen, healers and
the like should all have DETECT INVIS and DETECT
HIDDEN, unless you don’t want them to be able to inter-
act with invisible characters/objects.

There are a few other options for mobs. You can chose special skills such as spell casting and pick
pocketing to different mobs. These will be covered in detail in the #SPECIALS section, where those
skills are assigned.

That’s all there is to creating mobs. If you want to assign some of your mobs as shopkeepers, you will
do so later in the #SHOPS section.

A few last thoughts on mobs:

- Make your list of keywords as thorough as possible. Too many people write areas where the mobs have
a long description like ‘An ugly witch cackles as she stirs her bubbling cauldron’, but the only keywords

that word for the mob are ‘Brunhilda’ and ‘evil’. Players will get frustrated very quickly trying to interact
with a mob like that. If you want to be a successful builder, do not be that vague with your keywords. A
good rule of thumb is to include every noun and adjective from both the long and short description when
you create the list of the mob’s keywords.

- Try to be as detailed as you possibly can in the mob’s look description. Close your eyes and try to
get a good mental picture of the mob. Once you’ve done that, put into words as many of the details
you came up with as you can.

- At the same time, be objective about your descriptions. Put less emphasis on any interacting between the
mob and the character, and more emphasis on the mob by itself. Also, try not to come out and state the
mob’s emotions directly. Don’t say that a create is “happy.” Say that it is “smiling and giggling.” If you let
the players come to their own conclusions about the mob, they will enjoy your area better.

- Keep your mobs consistent with the theme of your area and with the overall theme of the mud. You mobs
should not look out of place in out fantasy world.

- Be detailed with you mobs, but remember that not every mob needs to be extremely interesting. A typical
village will probably have several ordinary children and adults who have nothing outwardly special about
them. Likewise, you area will probably have its share of mobs that are rather ‘plain.’

- Be aware that any keyword you assign to a mob will prevent that word from being used as a character
name. If you were to assign the keyword ‘Faustus’ to one of your mobs, I would not be able to log onto
the mud any more. If you submit an area with mob keywords that overlap with existing character names,
you will be asked to change those keywords.

- In general, try to aim for approximately one mob for every two rooms in your area. If there are a lot of
sentinel, increase the ratio to something a little closer to one mob for every one and a half rooms.

 Objects

The objects section can be somewhat tricky, because many builders tend to want to see every player
walking around with equipment that they wrote. As such, it is tempting, while you are building, to create
objects that are more powerful than anything that currently exists on the mud. Resist this temptation.
Please. To keep things somewhat realistic, your area should contain more ‘mundane’ equipment that
‘exceptional’ equipment. It’s all right to include a few powerful items, but they should be the exception,
rather than the norm. Yes, this does mean that you might be creating many objects that players will never
use, but your area will be more well rounded and detailed as a result. Enough with my moralizing for now.
Let’s move on to how you actually write the objects section.

The objects section of your area must begin with: #OBJECTS typed on a line all by itself. This tells the mud
that the following lines will contain the info necessary for all of the objects in your area.

After the line that signifies the start of the objects section, repeat each of the following entries for each
object you want to include:

Line A: #<onum>
 This tells the mud what id number the object will have. Start with the first vnum you have been
assigned. For each new object that you add, continue in numerical order until you run out of objects that
you want to include. I’ll start an example object with ‘#101’.

Line B: <name>~
 The name (which can be more than one word) tells the mud what keywords can be used with this
object. For example, if this line reads ‘wand	oak	crooked~’, then a player could use any of those three
words to interact with the object. Do not include any articles, such as an, a, or the on this line. Be sure
to include the tilde at the end of this line.

Line C: <short description>~
 The short description is what is shown when an object is in your inventory. It is also displayed as
part of a longer message when any player picks up, drops, wears, etc. said object. For example, I could
continue this object with the line ‘a	crooked	oak	wand~’ or something similar. Do not capitalize the start of
this line unless the short description of the object begins with a proper noun. Do not use any sort of ending
punctuation, but do be sure to end the line with a tilde.

Line D: <long description>~
 The long description is what you see when an object is lying on the floor. Since the mud displays
this on a line all by itself, you need to write the long description as a complete sentence, including
capitalization and proper ending punctuation. I could, for example, continue my object with the line
‘A	crooked	wand	made	from	oak	lies	here	in	the	dust.~’ Don’t forget the tilde after the ending
punctuation. Also, do you best to keep this long description from spilling over onto a second line.

Line E: ~
 Yep. That’s it. Just put a tilde all by itself on this line.

Line F: <object type> <extra bits> <wear bits>
 The object type is a single number that determines how the object behaves. The number can be
found in TABLE C. Extra bits are one or more numbers that determine if the object has any special
properties, such as glowing, invisibility, etc. You can find a listing of extra bits in TABLE D. Wear bits
are one or more numbers that determine whether or not an object can be picked up and if so, where it can
be worn. You can find the different wear bits in TABLE E. Continuing on with my example object, my
next line would be ‘3	1|1024	1|16384’. This means that the object is a wand, it glows and cannot be
used by evil characters, and that it can be picked up and held in the hand. Note that if you use more than
one number for the extra bits and wear bits, you must join them with a |. If you do not wish to include
extra bits or wear bits, put a 0 in that spot.

Line G: <value0> <value1> <value2> <value3>
 These four values help to determine exactly how the object works. This is where you set which
spells a potion will cast on a player, or how much weight a container can hold, or what type of damage a
weapon deals, etc. Each type of object uses these four values in different ways, so you’ll need to have a
good look at TABLE F. That table will tell you how to set these four values based on the object type you
set in the previous line. For my wand, I can set this line to be ‘20	8	8	10’. This means that the wand cast

the spell colour spray at level 20, and has 8 charges.

Line H: <weight> <cost> 0
 The weight is simple a single number that determines how heavy the object is. Use some common
sense when designating weights. Obviously, a steel breastplate should weigh much, much, much more than
a linen shirt. Objects weights should logically correlate to one another Pay special attention to the weight
for weapons, since characters with low strengths may not be able to wield heavier weapons. See TABLE
G to find out what strengths are needed to wield weapons of differing weights. Cost can be ignored unless
the object is a potion or pill. For those object types, you must designate a value, or shopkeepers will not be
able to sell them. The 0 at the end of this line gets ignored by the mud, but it has to be there, or the mud
will crash. For my wand, I’ll write this line as ‘3	0	0’.

 Extra descriptions are where you get to tell the players a little bit more about your objects. You are
not obligated to include any extra descriptions for any of the objects your write, but we highly recommend
that you do use them for most, if not all of your objects. Otherwise, when someone looks at the object, the
mud will just show them the long description again, even if the object is in the character’s inventory. If you
do not wish to include extra descriptions, skip lines I, J, and K.

Line I: E <extra description keywords>~
 When players look at any of these keywords, they will see the corresponding extra description.
Since I want players to be able to find out a little more about the wand, I will write this line as ‘E	wand	
oak	crooked~’. Again, don’t forget the tilde.

Line J: <extra description>
 This is the message that is displayed whenever a player looks at one of the keywords listed in
the line above. Just use this space to give a little more detail about the object. For example, I’ll put
‘Tiny	runes	are	carved	into	the	length	of	the	wand.		The	wood	seems	to	radiate	an	aura	of	
power.’ It’s perfectly all right for this description to spill over onto more than one line, but just make
sure that you hit return at the end of each line, rather than simply letting your word processor wrap the
words onto the next line by itself.

Line K: ~
 On the line just below the end of you extra description, put a tilde all by itself. Don’t put a tilde here
if you’re not using any extra descriptions, though.

 If you want, you can include multiple sets of extra descriptions. Just repeat lines I, J, and K for each
different extra description you wish to add onto the object.

Line L: A <apply bit> <apply value>
 Apply bits and values tell the mud to modify a player’s stats when they are wearing the object in
question. The different apply bits can be found in TABLE H. The apply value is simply how much the stat
specified by the apply bit is altered. For my wand, I’ll use ‘A	13	15’. This means that when the wand is
held, the character’s maximum number of hit points goes up by 15. If you want the object to affect more
than one stat, repeat line L on a new line for each affect you wish the object to have. Line L is optional. If
you do not wish for the object to affect stats, simply skip this line.

 At this point the object is finished. The next line in the area file will be line A once again,

specifying the number of the next object. If you have just written the last object you wish to include in your
area, type ‘#0’. That tells the mud that the #OBJECTS section is finished.

 Putting together all of the lines from my example, the start of my objects section would look
like this:

#OBJECTS
#101
wand	oak	crooked~
a	crooked	oak	wand~
A	crooked	wand	made	from	oak	lies	here	in	the	dust.~
~
3	1|1024	1|16384
20	8	8	10
3	0	0
E	wand	oak	crooked~
Tiny	runes	are	carved	into	the	length	of	the	wand.		The	wood	seems	to
radiate	an	aura	of	power.
~
A	13	15
#102
etc.	etc.	etc.
#0

OBJECT TABLES

TABLE C - TYPE NUMBERS FOR ITEMS

TYPE NUMBER

LIGHT 1
SCROLL 2
WAND 3
STAFF 4
WEAPON 5
TREASURE 8
ARMOR 9
POTION 10
FURNITURE 12
TRASH 13
CONTAINER 15
DRINK CONTAINER 17
KEY 18
FOOD 19
MONEY 20
FOUNTAIN 25
PILL 26
SCUBA 27
FLY 28
QUIVER 29
PROJECTILE 30

TABLE D - EXTRA BITS FOR ITEMS

FLAG BIT

GLOW 1
HUM 2
EVIL 16
INVIS 32
MAGIC 64
NODROP 128
ANTI GOOD 512
ANTI EVIL 1024
ANTI NEUTRAL 2048
NOREMOVE 4096
INVENTORY 8192
FLAMING 65536
INVISIFY 262144

TABLE E - WEAR BITS FOR ITEMS

SLOT BIT

TAKE 1 *if you don’t include the TAKE bit,
FINGER 2 players wont’ be able to pick up
NECK 4 the object.
BODY 8
HEAD 16
LEGS 32
FEET 64
HANDS 128
ARMS 256
OFFHAND 512
ABOUT BODY 1024
ABOUT WAIST 2048
WRIST 4096
WIELD 8192
HOLD 16384
TWO HANDED 32768

Most of these are self-explanatory. Inventory is a
little odd, though. If an object has the inventory bit, it
will disappear when its owner dies. This means that
it will be tricky for players to get such objects if a
mob has it, and that once they do get one of these
objects, they will lose it when they die.

TABLE F - OBJECT VALUES

Type # Value0 Value1 Value2 Value3

LIGHT 1 0 0 hours 0
SCROLL 2 spell level spell # 1 spell # 2 spell # 3
WAND 3 spell level max charges curr. charges spell #
STAFF 4 spell level max charges curr. charges spell #
WEAPON 5 0 0 0 damage type
TREASURE 8 0 0 0 0
ARMOR 9 0 0 0 0
POTION 10 spell level spell # 1 spell # 2 spell # 3
FURNITURE 12 0 0 0 0
TRASH 13 0 0 0 0
CONTAINER 15 max. wieght state ONUM of key 0
DRINK CONT. 17 max. capacity cur. capacity liquid type poison
KEY 18 0 0 0 0
FOOD 19 nourishment 0 0 poison
MONEY 20 0 0 0 0
FOUNTAIN 25 0 0 liquid type 0
PILL 26 spell level spell # 1 spell # 2 spell # 3
SCUBA 27 0 0 hours 0
FLY 28 0 0 0 0
QUIVER 29 max. weight state ONUM of key 0
THROW 30 0 0 0 0

NOTES:
 HOURS designates how many hours of game time the object will last. If
 set this number to -1, the object will last forever.
 Spell numbers for potions, staves, wands, pills, and container traps
 can be found in TABLE I.
 MAX CHARGES and CURRENT CHARGES for wands and staves should generally
 be set to the same number.
 DAMAGE TYPE for weapons can be found in TABLE J.
 STATE options for containers and quivers can be found in TABLE K.
 If a container has no key, use -1 for the key number.
 If a container is not trapped, use o for the trap spell number.
 MAX CAPACITY and CURRENT CAPACITY for drink containers tell how many
 units of liquid a player can drink from the container before it
 disappears. A typical drink is anywhere from 5 to 10 units.
 LIQUID TYPES can be found in TABLE L.
 POISON denotes whether the food or water is poisonous. 0 means it is
 fine. Any other number means it is not.
 QUIVER type objects are used to hold THROW type objects.

TABLE G - WEAPON WEIGHT INFO

The following table lists the weight limits for weapons that a character can wield based on their strength.
Keep these in mind when you are creating weapons.

STRENGTH MAX WIELDABLE WEIGHT

13 13
14 14
15 15
16 16
17 22
18 25
19 30
20 35
21 40
22 45
23 50
24 55
25 60

Since only dwarves can have a strength of 23
or higher, any weapon that weighs more than
45 pounds is effectively a dwarf-only object.

ATTRIBUTE BIT

STR 1
DEX 2
INT 3
WIS 4
CON 5
MANA 12
HIT POINTS 13
MOVEMENT 14
ARMOR CLASS 17
HITROLL BONUS 18
DAMAGE BONUS 19
SAVE VS. PARALYZATION 20
SAVE VS. RODS 21
SAVE VS. PETRIFICATION 22
SAVE VS. BREATH 23
SAVE VS. SPELL 24

For armor class and all the save vs. whatevers,
a negative value is a bonus, and a positive
value is a penalty. For everything else, posi-
tive is a bonus, negative is a penalty.

TABLE H - APPLY NUMBERS

Use these bits to specify which attributes an object will affect,

Object Apply Guidelines

One of the hardest things to do while building an area is balancing you objects to be sure that none of them
are too over-powerful, giving an unfair advantage to anyone that uses certain items from your area. To
ensure that none of objects are unfairly powerful, we ask that you use the following guidelines when you
apply bonus affects to the objects in your area file.

To determine the limit of possible effects for each individual object, use the following procedure:

Take the level of the mob upon which that this item loads. That number is the number of “points” that
you can use to assign bonus to the object.

Different bonuses can be added at the cost of different numbers of points. The costs are as follows:

str or dex each +1 costs 4 points
any other attribute each +1 costs 3 points
mana each +3 costs 2 points
hit points each +1 costs 1 point
movement each +4 costs 1 point
armor class each -3 costs 2 points
hitroll bonus each +1 costs 4 points
damroll bonus each +1 costs 7 points
any saving throw each -1 costs 4 points

if you change any of the above bonus to a penalty, you can subtract half the number of applicable points
from the total you have spent, For example, if one of the affects -1 to wisdom, you can subtract 2 from
the number of points you have spent.

Effects that limit the use of the object can also give you extra points to spend on your bonuses. Refer to the
list below to see how any extra points each limitation gives you.

if the object: you can spend an extra:
is useable by only two alignments 1 point for every ten levels of the object
is useable by only one alignment 2 points for every ten levels of the object
is something other than weapon or armor 1 point for every ten levels of the object
is a shield 2 points for every ten levels of the object
is no-drop or no-remove* 1 point for every ten levels of the object
is held by an aggressive mob or a
 mob with sanctuary* 2 point for every ten levels of the object
is significantly far from recall** 1 or 2 point for every ten levels of the object

* Only apply this once. An object that is both no-drop and no-remove gets no more extra points that
an object that is simply no-drop.
** Talk to the builder imms to see if this can apply to objects in your area.

An example of an object that falls within these guidelines appears as follows:

Mithril Gauntlets (level 40)
+ 2 to strength (+8 pts)
- 2 to wisdom (-3 pts)
+ 3 to hitroll (+12 pts)
+ 2 to damroll (+12 pts)
+ 20 hitpoints (+20 pts)
anti-evil (-4 pts)
held by aggressive mob (-8 pts)

total 37 points

Please note that only a few of the objects in your area should use their maximum allotment of points. It
is possible to include one or two exceptional items in your area that exceed these limits, but do not go
overboard. If you abuse these limits, you will be asked to revise the statistics for your objects.

TABLE I - SPELL NUMBERS

The following table lists which numbers correspond to which individual spells. Not all spells will work
with all types of objects. This table also tells you whether or not any given spell will work when placed
on different object types.

SPELL NAME NUMBER WAND/SCROLL STAFF POTION/PILL

acid blast 70 yes yes no
acid breath 200 yes yes no
adrenaline control 470 yes yes yes
agitation 471 yes yes no
armor 1 yes yes yes
astral 100 no no no
awe 473 no no no
ballistic attack 474 yes yes no
bamf 700 yes yes no
berzerk 92 yes yes yes
bless 3 yes yes yes
biofeedback 475 yes yes yes
blindness 4 yes yes no
buddha finger 600 yes yes yes
burning hands 5 yes yes no
call lightning 6 yes yes yes
cause critical 63 yes yes no
cause light 62 yes yes no
cause serious 64 yes yes no

cell adjustment 476 yes yes yes
change sex 82 yes yes yes
charm person 7 yes yes no
chill touch 8 yes yes no
chin kang palm 601 yes yes no
colour spray 10 yes yes no
combat mind 477 yes yes yes
complete healing 478 yes yes yes
concentrate 602 yes yes yes
control flames 478 yes yes no
continual light 57 yes yes yes
control weather 11 no no no
create food 12 yes yes yes
create sound 480 no no no
create spring 80 yes yes yes
create water 13 yes no no
cure blindness 14 yes yes yes
cure critical 15 yes yes yes
cure disease 501 yes yes yes
cure light 16 yes yes yes
cure poison 43 yes yes yes
cure serious 61 yes yes yes
curse 17 yes yes no
death field 481 yes yes yes
detect evil 18 yes yes yes
detect hidden 44 yes yes yes
detect invis 19 yes yes yes
detect magic 20 yes yes yes
detect poison 21 yes no no
detect presence 618 yes yes yes
detonate 482 yes yes no
disintigrate 483 yes yes no
dispel evil 22 yes yes no
dispel magic 59 yes yes yes
displacement 484 yes yes yes
earthquake 23 yes yes yes
ectoplasmic form 485 yes yes yes
ego whip 486 yes yes no
enchant weapon 24 yes no no
energy containment 487 yes yes yes
energy drain 25 yes yes no
energy transfer 91 yes yes no
enflame weapon 97 yes no no
enhance armor 488 yes no no
enhanced strength 489 yes yes yes
expose 617 yes no no
faerie fire 72 yes yes no

SPELL NAME NUMBER WAND/SCROLL STAFF POTION/PILL

faerie fog 73 yes yes yes
fire breath 201 yes yes no
fireball 26 yes yes no
firm grasp 610 yes yes yes
flamestrike 65 yes yes no
flesh armor 490 yes yes yes
fly 56 yes yes yes
frenzy 609 yes yes yes
frost breath 202 yes yes no
gas breath 203 yes yes yes
general purpose 205 yes yes no
giant strength 39 yes yes yes
harm 27 yes yes no
heal 28 yes yes yes
high explosive 206 yes yes no
identify 53 yes no no
inertial barrier 491 yes yes yes
inflict pain 492 yes yes no
insight 611 yes no no
intellect fortress 493 yes yes yes
illusion 613 yes yes no
infravision 77 yes yes yes
invis 29 yes yes yes
iron monk 603 yes yes yes
know alignment 58 yes yes no
laughing buddha 604 yes yes no
lend health 494 yes yes no
levitation 495 yes yes yes
lightning bolt 30 yes yes no
lightning breath 204 yes yes no
locate object 31 no no no
magic missile 32 yes yes no
mass invis 69 yes yes yes
mass heal 608 yes yes yes
medicine 605 yes yes yes
mental barrier 496 yes yes yes
mind scramble 615 yes yes no
pass door 74 yes yes yes
plague 503 yes yes no
prayer 606 yes yes yes
poison 33 yes yes no
project force 498 yes yes no
protection 34 yes yes yes
psionic blast 499 yes yes no
psychic crush 460 yes yes no
psychic drain 461 yes yes no
psychic healing 462 yes yes yes

SPELL NAME NUMBER WAND/SCROLL STAFF POTION/PILL

quivering palm 607 yes yes no
refresh 81 yes yes yes
remove curse 35 yes yes yes
repel 612 yes yes no
sanctuary 36 yes yes yes
scry 614 no no no
sizzle 616 yes no no
share strength 464 yes yes no
shield 67 yes yes yes
shocking grasp 37 yes yes no
sleep 38 yes yes no
spite 90 yes yes no
stone skin 66 yes yes yes
summon 40 no no no
telepathy 619 no no no
teleport 2 no no no
thought shield 465 yes yes yes
transform energy 95 yes yes yes
ultrablast 466 yes yes no
ventriloquate 41 no no no
weaken 68 yes yes no
web 93 yes yes no
word of recall 42 no yes yes

SPELL NAME NUMBER WAND/SCROLL STAFF POTION/PILL

TABLE J - WEAPON DAMAGE TYPES

TYPE NUMBER

HIT 0
SLICE 1
STAB 2
SLASH 3
WHIP 4
CLAW 5
BLAST 6
POUND 7
CRUSH 8
GREP 9
BITE 10
PIERCE 11
SUCTION 12

The damage type determines what message will be
displayed to the player when they do damage with
their weapon. There is no actual game-play differ-
ence between any of these damage types, with the
exception of piercing-type weapons. Weapons that
pierce all the only weapons that can be used by a
kender for the backstab skill.

TABLE L - LIQUID TYPES

0 - water 1 - beer* 2 - wine* 3 - ale*
4 - dark ale* 5 - whisky* 6 - lemonade 7 - firebreather*
8 - local specialty* 9 - slime mold juice% 10 - milk 11 - tea
12 - coffee 13 - blood% 14 - salt water% 15 - cola
16 - ice water 17 - stagnant water 18 - sewer water 19 - soda water
20 - tonic water 21 - ginger ale 22 - root beer 23 - cherry cola
24 - orange soda 25 - herbal tea 26 - lemon juice 27 - pink lemonade
28 - grapefruit juice 29 - orange juice 30 - tomato juice 31 - pickle juice
32 - banana juice 33 - watermellon juice34 - cantaulope juice 35 - beet juice
36 - kraut juice 37 - cranberry juice 38 - pineapple juice 39 - cherry juice
40 - grape juice 41 - apple juice 42 - blueberry juice 43 - blackberry juice
44 - raspberry juice 45 - kiwi juice 46 - mango juice 47 - apple cider*
48 - coconut milk 49 - chocolate mile 50 - chocolate milkshake 51 - vanilla milkshake
52 -strawberry milkshake 53 - pink goat milk 54 - buttermilk 55 - clabbered milk
56 - cream 57 - vanilla extract 58 - tabasco 59 - melted butter
60 - olive oil 61 - barbecue sauce 62 - gravy 63 - beef stew
64 - vegetable stew 65 - broth 66 - borsht 67 - tomato soup
68 - chicken noodle soup 69 - beet soup 70 - mushroom soup 71 - clam chowder
72 - strange brew 73 - Reisling* 74 - Chenin Blanc* 75 - Gewrtztraminer*
76 - Pinot Blanc* 77 - Gris* 78 - Trebbiano* 79 - Muscat*
80 - Semillon* 81 - Chardonnay* 82 - Cabernay Fran* 83 - Sangiovese*
84 - Tempranillo* 85 - Syrah* 86 - Grenache* 87 - Zinfindel*
88 - Gamay* 89 - Nebbiolo* 90 - Cabernet Sauvignon *91 - Pinot Noir*
92 - Merlot* 93 - Meritage* 94 - fermentation* 95 - house blend*
96 - sparkling wine* 97 - sherry* 98 - port* 99 - mead wine*
100 - stout* 101 - cream stout* 102 - oatmeal stout* 103 - porter*
104 - honey porter* 105 - lager* 106 - honey brown lager* 107 - summer brew*

TABLE K - CONTAINER BITS

FLAG BIT

CLOSEABLE 1
PICKPROOF 2
CLOSED 4
LOCKED 8

Use a combination of these flags for value1 of container
type objects. If you use more than one of these flags, be
sure to separate them with the | symbol. For example, if
you want to have a closeable object that is closed when it
loads, but not locked, you would use ‘1|4’. The closed and
locked flags will determine whether the container is closed
and locked when the container loads into the mud. If you
want the container to load in the closed state, be sure that
you also give it the closeable bit as well, or no one will be
able to open it. Lastly, it you don’t want the container to be
closeable at all, just put a 0 in value1 for the object.

108 - winter brew* 109 - honey wheat* 110 - honey brown ale* 111 -dark and dry cider*
112 - brown ale* 113 - chocolate amber ale* 114 - stock ale* 115 - stock lager*
116 - pub draft* 117 - pilsner* 118 - nut brown ale* 119 - mocha stout*
120 - amber ale* 121 - triple malt ale* 122 - wicked ale* 123 - pale ale*
124 - grain alcohol* 125 - vodka* 126 - gin* 127 - rum*
128 - sloe gin* 129 - dry vermouth* 130 - sweet vermouth* 131 - tequilla*
132 - liquer* 133 - bitters 134 - blended scotch* 135 - single malt scotch*
136 - 15 year old single malt*137 -50 year old single malt* 138 - bourbon* 139 - sour mash*
140 - straight bourbon* 141 - bile% 142 - grape slushee 143 - cherry slushee
144 - cola slushee 145 - pepsi 146 - mountain dew* 147 - blood%
148 - saliva

Liquids marked with an * will increase a player’s drunk state.
Liquids marked with a % will actually increase a player’s thirst.

There are a few other special characteristics you can odd to you objects, but they will be covered in the
SPECIALS section.

*** ADVANCED OBJECT TOPICS ***

Once you are familiar with creating objects for your areas, try out some of these options. If you’re new
to building, you might want to skip this section and finish up with the general object hints at the end
of the objects section.

SPELLED WEAPONS

It is possible to create a weapon that casts a certain spell sometimes when it hits. Spell weapons are very
cool, but they shouldn’t be too common. Moderation is the key. If you wish to create such a weapon,
follow these steps:

1. Add the ‘spell weapon’ extra bit in the extras spot for the weapon. The bit for spelled weapons is
33554432.

2. Set value0 for the weapon to the spell number you wish to use. DO NOT, however, use the spell
numbers from TABLE I. Use the numbers below, instead.

acid blast 1 fire breath 89
acid breath 87 fireball 46
adrenaline control 117 flamestrike 47
agitation 118 flesh armor 137
armor 2 fly 48

aura sight 119 frost breath 89
awe 120 gas breath 90
bamf 6 general purpose 115
ballistic attack 121 giant strength 50
biofeedback 122 harm 51
blindness 7 heal 52
buddha finger 8 high explosive 116
burning hands 9 illusion 189
call lightning 10 inertial barrier* 138
cause critical 11 inflict pain 139
cause light 12 infravision 54
cause serious 13 insight 187
cell adjustment* 123 intellect fortress* 140
change sex 14 invis 55
chill touch 16 iron monk 56
chin kang palm 17 laughing buddha 58
colour spray 18 lend health 141
combat mind 124 levitation 142
complete healing 125 lightning bolt 59
concentrate 19 lightning breath 91
continual light 20 magic missile 61
control flames 126 mass invis* 62
create food 22 mass heal* 63
create spring 23 medicine 64
cure blindness 25 mental barrier* 143
cure critical 26 mind scramble 191
cure disease 27 pass door 65
cure light 28 plague 66
cure poison 29 poison 68
cure serious 30 project force 145
curse 31 protection 70
death field 128 psionic blast 146
detect evil 32 psychic crush 147
detect hidden 33 psychic healing 149
detect invis 34 quivering palm 71
detect magic 35 refresh 72
detect presence* 194 remove curse 73
detonate 129 sanctuary 74
disintegration 130 share strength 150
dispel evil 37 shield 75
dispel magic 38 shocking grasp 76
displacement 131 sizzle 192
earthquake 39 sleep 77
ectoplasmic form 132 stone skin 79
ego whip 133 teleport** 81
empath* 186 thought shield 151
energy containment 134 transform energy 82
energy drain 41 ultrablast 152

energy transfer 42 weaken 84
enhanced strength 136 web 85
expose 193
faerie fire 44
faerie fog 45

* - These spells will be cast on the weapon’s wielder, not on the mob.
** - Teleport will work on a spell weapon, but will always result in a mis-teleport, sending the wielder to
some random location. Use this very, very sparingly, if at all.

Be aware that, with the exception of those spells marked with an *, all spell weapons will affect the mob
being fought. Yes, it is possible to create a weapon that will cast sanctuary on a mob in the middle of a
fight, but you should have a very, very good reason for using a non-offensive spell on a spell weapon.

ENTERABLE OBJECTS

You can designate certain containers in you area as enterable. This means that you could create, say,
a tent that players can sleep in, or a fireplace that a character can enter and root around in the ashes,
looking for hidden items. Generally, enterable objects should not be takeable, but if you have a good
reason that fits with the theme of your area, you can create enterable objects that can be picked up and
carried around.

To create an enterable container, first create it like any other container. Add an extra flag with the value
133680 to the container’s Value1 (the spot that determines that container’s state).

If you want, you can create a special interior description for the object that can be seen by players who are
inside. Simply add an extra description with the keyword: inside_description (the underscore is required).
The extra description text will automatically be shown to players on the inside of the object.

You will probably have to set the Value0 of the container to a fairly high number, since the container’s max
weight will have to be great enough to hold the character *and* all of their equipment. If you want to be
mean, keep that number fairly low so that a player will have to drop most, if not all of their equipment
before entering the object. Meanness is always an admirable quality in a builder.

PERSONALIZED OBJECTS

You can set up an object so that only someone who kills the mob at originally owned said object is able to
use it. The process is tricky and must be followed exactly, so read this part very, very carefully.

First of all, you have to create an owner list for the object. This list is just an extra description for the object
with the keyword: owner_list (make sure you include the underscore). The description that goes along with
this keyword will be a list of the keywords for all of the mobs you wish this item to load onto. You must
use all of the keywords for these mobs as they appear in the #MOBS section of your area file. Each group
of mob keywords must be surrounded by single quotes (‘). put a single space between each set of mob
keywords, if there is more than one mob you wish to be able to use this item.

So.... Suppose you wish to create a personalized sword that will load onto three different mobs: a
hobgoblin, a goblin, and an elf.
The hobgoblin’s full set of keywords is: hobgoblin hob green
The goblin’s full set of keywords is: goblin gob short
The elf’s full set of keywords is: elf short blond

You then have to set up an extra description for the sword as follows:

E	owner_list~
‘hobgoblin	hob	green’	‘goblin	gob	short’	‘elf	short	blond’
~

Any player that kills a mob holding said item will have his or her name added to that list, so that they
can use the object, but other people can’t.

The last step to making a personalized object is to set the object as speco_personalized in the #SPECIALS
section. More info on that in the instructions for SPECIALS.

DAMAGED ARMOR

 Using the normal object creation guidelines, any piece of armor that you create starts out in perfect
condition. Only after fighting for a while will equipment get damaged. However, it is possible to make
equipment that starts out in less than perfect condition.
 TABLE F states that Value0, Value1, Value2, and Value3 should all be set to 0 if the item is armor. If you
want a piece of armor to start out as damaged, though, you’ll have to change value1. The following chart
shows the possible numbers for Value1 and their corresponding damage states:

 0 Like New
 1 Broken In
 2 Scratched
 3 Nicked
 4 Dented
 5 Damaged

 6 Hammered
 7 Smashed
 8 THRASHED
 9 SHREDED
 10 DESTROYED

 If Value1 is set to 10 or higher, the piece of armor will be destroyed completely the next time it gets
damaged. Players can, at any time, restore the armor to like new condition by having it repaired.

Number of repairs

 Normally, armor can be repaired a total of ten times. When you create your objects, though, you can
choose to set a lower limit for the number of times a piece of armor can be repaired.
 Instead of setting Value3 to 0, as indicated in TABLE F, set it to 10 minus the total number of repairs that
object can have. (Thus, if you want to limit the total number of repairs for an object to four, set Value3 to
6.) You can make an object that is unrepairable by setting Value3 to 10 or higher.
 It is possible to used damaged armor and a limited number of repairs together on a single item. It is
even possible to create a very fragile item that cannot be repaired and will be destroyed easily by setting
both Value1 and Value3 to 10.

A few last thoughts on objects:

- The keyword for each of you objects had better include every noun and adjective in both the object’s short
and long descriptions. Few things irritate me as much as seeing “A short blade with a golden hilt lies on the
floor”, only to find that blade, hilt, short and/or golden cannot be used to pick up the object. If you don’t
make your list of keywords as thorough as possible, you’d better have a very good reason.

- You don’t need to worry about setting the level of you equipment. The mud will automatically generate
the level based on the level of the mob on which the equipment loads.

- Even if it seems like it’s going to be boring, you should create some mundane, clothing-like equipment
for your mobs. Generally, people don’t wander around naked. Neither should you mobs, unless they’re
animals. Create a few tunics and jerkins and such so you humanoid mobs don’t have to cover themselves
with their bare hands.

- Likewise, create some ‘plain’ items to leave sitting around the rooms. If you create a woodworkers shop,
there should probably be some saws, chisels, and other tools that a character could pick up and take with
them, even if they serve no practical purpose in the game.

- Try to include extra descriptions for every keyword of your object. It will make things far more detailed
and interesting. You don’t have to assign each individual keyword its own description. You can link them
all to one or two good extra descriptions.

- Not all objects have to be able to be picked up by players. No-take objects can add new layers of depth
and realism to your rooms, even if they are never going to be used for any practical in-game purpose.

- Make sure your items fit within the theme of your area and within the overall blanket theme of the
mud. Remember, we are a medieval-fantasy based mud. Guns, cars, walkmans, boxer-briefs, cell phones,

computers, or anything else modern should not be included in your area.

- Its possible to create “hidden” items. Just eliminate the words for the line where you create the object’s
long description and use a lone tilde by itself. The object won’t show up on the players’ screens, but can
still be manipulated. This works especially well if the room description includes something like “a chest
of drawers.” You can create a hidden chest that clever players who read the room descriptions will open
to discover the cool contents you put inside. Hidden items like this work best if they are no-take. Do not
attempt to put two hidden items in the same room. The result is just plain ugly.

- Another example for the above. Say that you have a series of rooms with a river running through
them. You could create an invisible fountain type object with the keyword ‘water’ or ‘river’ and the short
description ‘a river’ and put that hidden item into each of those rooms. That way, it would be set up so that
a player could drink from the river in any of those rooms.

- While you’re designing your objects, keep in mind that while a dragon probably has piles and piles of
valuable goodies, several objects in its hoard are probably worthless junk. It’s all right, and sometimes
desirable, to create objects that players won’t drool over.

- Don’t give everything away in the long or short description of an item. A phrase like “a yellow potion
of see invisible” is not nearly as interesting or engaging from a game-play perspective as something like
“a frothy yellow potion that bubbles.”

- Containers can be used in lots of very creative, clever ways. They don’t even have to be ‘containers’ in
the conventional sense of the word. You could create a container called ‘a hole in the wall’ that players
can reach into and remove stuff. You could create some eggs and place them in a container called ‘a bird’s
nest’. Try naming a container ‘a tree’ and making some fruit to put inside it. You’ve got a fruit tree that
players can ‘pick’ fruit from. The possibilities are almost endless. Note, though, that most of these creative
containers should be no-take items.

Rooms

The rooms section is arguably the most important section in your area file. Sure, you can create plenty
of interesting monsters and items, but without a good rooms section, the whole area is just boring overall.
Connecting rooms can be a little bit tricky, since you have to keep very good track of which rooms connect
to which and in what direction these connections lie. This is where designing a map of your area ahead
of time comes in very handy. Some people tend to repeat room descriptions, giving identical details for
multiple rooms. Generally, this reflects very shoddy workmanship. If you serious about building a quality
area, you can spend the time it takes to write unique descriptions for each room. The only time that
repeated room descriptions are acceptable are in a random maze. (More info on random mazed later.)

Your rooms section will begin with the following line: #ROOMS (again, all caps, no other punctuation). This
tells the mud that the information that follows contains details on all of the rooms.

After that, follow the same pattern of lines for each room that you want to include in your area.

Line A: #<rnum>
 This is the ID number for your room. As you create each room, take careful note of which room
number is assigned to which room. When you link your rooms together, you will link them according
to the room’s ID number. The easiest way to keep from getting confused is to have a map of your area
on graph paper with the numbers written in the space for each room. I’ll start my example room with
the following: ‘#101’.

Line B: <room name>~
 This is the name that is displayed to the player above the room’s description and above the list
of exits. Keep in mind, the room name is to be written as a title. This means, do not use a complete
sentence as you title. Do not use ending punctuation. Always capitalize the first word and also capitalize
every other word in the room name with the exception of articles and prepositions. To show a title in the
appropriate format, my example will be ‘In	a	Dusty	Wooden	Hallway~’ (with that oh-so-important tilde
at the end, but no other ending punctuation).

Line C: <room description>
 This is definitely not the place to scrimp creatively. Here, you must write multiple lines of
description. Area that are submitted with single sentence room descriptions will be returned to their
authors for further work on this section. Once again, close your eyes and picture every detail of the
spot you are trying to describe. Think objectively. Describe concrete details that can be experienced
through the five senses. The more detail you can include, the better. An example of a decent looking
room description in as follows:

A	wood-lined	hallway,	roughly	eight	feet	in	height,	extends	away	from	a	thick
oak	door	set	into	the	southern	wall.		A	thin,	ashen	layer	of	dust	coats	the
hardwood	panels	of	the	floor,	but	this	layer	is	disturbed	in	several	places	by
delicate	footprints.		A	low	bench	sits	against	the	western	wall	next	to	an
open	doorway.		As	the	musty	air	swirls	about,	a	set	of	quiet	footprints	echoes
by	from	the	north.

You should be sure to hit return at the end of each line before the words wrap down to the subsequent
line. This will keep the mud from doing funny things to the word wrap of your description and keep
things from looking ugly. Be sure that you use complete sentences and that you don’t put a tilde at the
end of the last line.

Line D: ~
 This is where the tilde after your room description goes. It belongs all by itself one line down
from the end of your room description.

Line E: 0 <room flags> <sector>
 The zero at the start of this line will always be a zero. The mud doesn’t actually care what number
goes in that spot, so it’s not worth wasting brain power to try and think of anything else to use there. Room
flags are a series of numbers that define any special characteristics that the room will have. You can find the
bits to use for the room flags in TABLE M. If you use more than one flag, be sure to join them with the
| character. If you do no wish to use any room flags, simply enter another 0. Sector just a single number
that determines the terrain type of the room. It affects how much movement a character must spend to
move through the room, and in some cases can restrict which rooms a person may enter. For the sector,
simply chose the number from TABLE N that corresponds to the terrain you would like to use and enter

that number at the end of this line. In the room I’m creating here, I’ll use ‘0	8|8192	1’. This means that the
room is indoors, players cannot recall from this room, and its terrain type is ‘city’.

If this is a no-exit room, skip lines F through H. Otherwise, repeat those lines for each of the room’s
exits.

Line F: D<direction number>
 All that you should have on this line is a capital D and a number between 0 and 5 with no spaces
between them. The directions correspond to the following numbers: north=0, east=1, south=2, west=3,
up=4, and down=5. These values are repeated in TABLE O.

If you have multiple exits, write them in numerical order (i.e. if your exits lead south, east, and up, first
write out all of the info for the east exit, then everything for the south exit, and lastly all of the specification
for the up exit). In my room description above, I mentioned that the hallway leads to the north, so I’ll start
the exit in that direction with the following info on this line: ‘D0’ (with nothing else at all on the line).

Line G: <exit description>
 The exit description is a brief message displayed to the player whenever they look in that particular
direction from within the room. Exit descriptions are not required, but are recommended. They are an
excellent way to give players hints and warning about what lies nearby. Here, I’ll include the line ‘The	
light	from	a	nearby	torch	fills	the	hallway	with	flickering	shadows.’ Write the exit description
as a complete sentence and do not use a tilde. If you chose not to use an exit description, skip this line
completely. Do not even leave a black space in it’s place.

Line H: ~
 Regardless of whether or not you chose to include an exit description, place a tile all by itself
on this line.

Line G: <exit keywords>~
 If you wish to use a door for you exit, this is where you will designate one or more keywords
that can be used to open, close, lock, or unlock that door. If the exit has no door, there is no need to
create keywords, but you still need the tilde. Since my north exit for this room has no door, I’ll skip the
keywords and just put ‘~’ on this line.

Line H: <door type> <key #> <connected room #>
 If the exit has no door, just use a 0 as the first number on this line. If you wish to use a regular door
at this exit, start this line with a 1, and if you want to make a pick-proof door, put a 2 as the first number
on the line. As of now, there are no other options for doors. The key number is whatever onum is assigned
to the object that locks and unlocks this exit. If you have no door here, you don’t need a key at all, so just
put -1 in this spot. If you do have a door, you are not required to assign a key. If this is a door that
is not going to be locked at all, just enter a -1 as the second number. Only enter a key number if this
is a door that is normally going to be locked. Lastly, the connected room number is the rnum of the
room that this exit leads to. As I mentioned earlier, its best to have a detailed map of your area written
out so you can just glance at that to be sure of the room number you wish the exit to lead to. This line
for my example will look like: ‘0	-1	102’, meaning that there is no door, no key for this exit, and that
this exit leads to room 102.

If you need to see an example of an exit that does include a door, just look a little further down. When
I assemble all of the parts of my example room, I’ll show the info for all of the exits, not just the one
to the north.

If your room has more than one exit, repeat lines F through H for each exit.

Lines I, J, and K are optional, although we do encourage you to use them. These lines detail any extra
information you might want to give to the more observant players concerning the room. You can include
as many of these extras as you want. Simply repeat lines I, J, and K for each one. If you do not want to
describe any extra things in the room, skip these lines completely.

Line I: <extra description keywords>~
 This tells the mud which keywords will be linked with the extra description you are creating.
Whenever a players looks at one of those keywords, they will see the message that you designate. Look
back up at the description I wrote earlier for my example room. I mentioned a bench, and someone might
be kind of curious about it. I’ll write this line as ‘bench	low~’ (including the tilde) so that anyone who looks
at either of those two words will see the extra description.

Line J: <extra description>
 This is one or more lines of text displayed to the player when they actively look at one of the
keywords listed above. This is an excellent place to give clues about nearby hidden objects or doors, or
it can simply be a way to make your rooms more detailed and realistic. Either way, extra descriptions
can help make your rooms come alive. I’ll use the following paragraph to match with the keywords I
designated in the previous line:

The	finely	carved	scrollwork	of	this	bench	marks	it	as	being	of	elven
craftsmanship,	probably	dating	back	over	a	hundred	years.		Its	surface	shines
with	signs	of	frequent	polishings.		A	small	scrap	of	paper	sits	folded	over
near	the	center	of	the	bench.

Note that is this description spills over onto multiple lines, you should be sure to hit return before the
words wrap down for each of the lines.

Line K: ~
 If you have made an extra description, end it with a tilde on a line all by itself.

At this point you could go on and repeat lines I, J, and K to add another extra description (in this case
I could add another description about the paper) or you can simply end the room description with the
last item for each room.

Line L: S
 All rooms need to finish with a capital S all by itself. Put it on the line after the tilde of your
last extra description, or, if you have no extra descriptions, on the line after your last door. Every single
room in your area must end with this S.

Just below the S, start over again with the rnum of your next room. If you have no more rooms to write,
Just enter ‘#0” after the last S.

When we put all of the parts of the rooms section together, it should look something like this:

#ROOMS
#101
In	a	Dusty	Wooden	Hallway~
A	wood-lined	hallway,	roughly	eight	feet	in	height,	extends	away	from	a	thick
oak	door	set	into	the	southern	wall.		A	thin,	ashen	layer	of	dust	coats	the
hardwood	panels	of	the	floor,	but	this	layer	is	disturbed	in	several	places	by
delicate	footprints.		A	low	bench	sits	against	the	western	wall	next	to	an
open	doorway.		As	the	musty	air	swirls	about,	a	set	of	quiet	footprints	echoes
by	from	the	north.
~
0	8|8192	1
D0
The	light	from	a	nearby	torch	fills	the	hallway	with	flickering	shadows.
~
~
0	-1	102
D2
A	door	fashioned	from	heavy	oak	beams	hangs	from	polished	brass	hinges.
~
door	oak	heavy~
0	102	103
D3
A	dimly	lit	sitting	room	lies	beyond	an	open	doorway.
~
~
0	-1	103
E	bench	low~
The	finely	carved	scrollwork	of	this	bench	marks	it	as	being	of	elven
craftsmanship,	probably	dating	back	over	a	hundred	years.		Its	surface	shines
with	signs	of	frequent	polishings.		A	small	scrap	of	paper	sits	folded	over
near	the	center	of	the	bench.
~
E	scrap	paper~
This	delicate	slip	of	paper	bears	the	following	message:

			Roger,
					I	am	deeply	sorry	that	I	had	to	take	your	keys	without	telling	you	first.
			You	may	retrieve	them	at	your	convenience	from	the	bartender	at	the	tavern
			across	the	road.		Thanks	for	your	understanding.
					-Stephan
~
S
#102
etc.	etc.	etc.
#0

ROOM TABLES

TABLE M - ROOM FLAGS

FLAG BIT
DARK 1
NO MOB 4
INDOORS 8
NO MAGIC TO 16
NO MAGIC FROM 32
ARENA 64
ANTI-MAGIC 128
PRIVATE 512
SAFE 1024
SOLITARY 2048
PET SHOP 4096
NO RECALL 8192
BANK 16384
NORTH CURRENT 32768
EAST CURRENT 65536
SOUTH CURRENT 131072
WEST CURRENT 262144
UP CURRENT 524288
DOWN CURRENT 1048576

TABLE N - SECTOR TYPES

TERRAIN VALUE
INSIDE 0
CITY 1
FIELD 2
FOREST 3
HILLS 4
MOUNTAIN 5
WATER (SWIMMABLE) 6
WATER (NON-SWIMMABLE) 7
AIR 9
DESERT 10
UNDERWATER 11

NOTES:
Players will need a fly spell or a vehicle to move
through a non-swimmable water room.

Players will need a fly spell to move through air
rooms.

Players will need scuba gear to move through an
underwater room.

TABLE O - DIRECTIONS

DIRECTION VALUE
NORTH 0
EAST 1
SOUTH 2
WEST 3
UP 4
DOWN 5

*** ADVANCED ROOM TOPICS ***

Some of the following items might be a bit tricky or confusing for first-time builders. If you’d like to
try some, be sure to read the descriptions fully and don’t be afraid to ask for help from one of the other
more experienced builders.

PET SHOPS

Most shops are easy to make. Simple create a mob for a certain room and then set that mob’s characteristics
in the SHOPS section. Pet shops are more complicated, though.

Firstly, you must assign the PET SHOP room flag (4096) to the room that you wish to use as your pet shop.
Next, create a special storage room for the pets. This storage room must have the vnum immediately after
the room that you created as the pet shop. There should be no exits that lead into or out of the storage
room. Lastly, when you set up your mob resets, load the shopkeeper into the pet shop room, and the mobs
to be sold as pets into the storage room.

RANDOMIZED MAZES

Random mazes, where all of the rooms have the same description and the exits rearrange themselves
whenever the mud resets, can add a new challenge to your area. They make things more difficult for
the players, but can also be a serious headache for you if you are trying to correctly incorporate one into
your area.

Most random mazes are set up as two dimensional or three dimensional grids. If you want to make a

have four different exits. Once all of the rooms on the outside are connected to each other, a player will be
able to travel infinitely far in any direction even though there are only nine rooms.

After this, you need to attach an entrance and an exit to your maze so that players can get in and out.

simple two dimensional random maze, start out with a series of
identical rooms laid out and connected in a square, just like at
the right (dashes show the connections between rooms):

Next, add exits to the outside rooms that “wrap around” to the
opposite side. (I.e. C leads east to A, D leads east to F, B leads
north to H, I leads south to C, and so on.) This way, each will

 A - B - C
 | | |
 D - E - F
 | | |
 G - H - I

To do this, simply reassign a pair of your outside exits so that
they connect the maze to outside rooms. We can take the
previous grid and add an entrance room (which I’ll label as
1) and an exit room (which I’ll label as 0). It should look
something like this:

If you’ve already connect all of the wrap around exits, there
are two extraneous exits that the mud won’t like. The code
doesn’t like the idea of being able to head north from C, and

 1
 | | |
 - A - B - C -
 | | |
 - D - E - F -
 | | |
 - G - H - I -
 | | |
 0

then south to 0, or of being able to go south from G, and then north to 1. If you leave the exits like this, the
mud will complain. To remedy the situation, simply change the south exit from G so that it leads to C, and
the north exit from C so that it leads to G. Now all of the exits line up nicely.

The last step is to assign all of the rooms (A through H) as random rooms in the RESETS section. Once
that is done, the exits in those rooms will randomly reassign themselves each time the mud repops. See the
RESETS part of the guide for the final details.

If you wish to make a three dimensional maze, the
process is basically the same, there are simply more
exits to deal with. For the most basic of three
dimensional mazes, lets start with two 2 by 2 grids:

Next, arrange things so that A is directly over E, B is
directly over F, and so on:

As before, add “wrap around” exits, so that B leads
east to A, H leads south to F, D leads up to H, G
leads down to C, and so on. Change one of those

 A----B E-----F
 | | | |
 | | | |
 C----D G----H

 A----B
 | \ | \
 | \ | \
 E----F \
 \ C-\----D
 \ | \ |
 \ | \ |
 G----H

exits to an entrance for the maze and one to an exit. Make sure all of the exits balance out. Then finish by
setting all of the rooms in the maze as randomized rooms in the RESETS section.

There is no set upper limit for the size of a random maze. It is possible to create a 20 by 20 grid of
rooms and use them as a random maze, but it will be almost impossible to navigate. Players will avoid
such a place and, if you create a maze like this, we’ll probably send the area back to you to reduce the
size of the maze.

Also, your maze does not necessarily have to be set up in a square or a cube, nor do all of the rooms have
to have the same number of exits. Once you are used to creating randomized mazes, you may wish to
experiment with unconventional styles.

A few last thoughts on rooms:

- One of the hardest things to learn about writing good room descriptions is learning the difference between
‘telling’ and ‘showing.’ It is rather dull and boring to simply tell a player the reaction that they have upon
entering a room. Rather, focus on what brings about that particular reaction. Show the players those
details, and let them come to the right conclusions on their own. Don’t use phrases like “The hallway
looks quite scary.” Instead, it sounds much better to say something like “The hallway is filled with deep
pockets of shadow, any of which could hide a creature waiting to strike.” I think it’s pretty clear which
sounds better.

- Some muds forbid the use of the word ‘you’ in the room descriptions. We have no hard and fast rule
against its use, but if you do chose to use it, do so sparingly. Especially avoid using it to tell players
how they feel or to tell someone that they are performing some unusual action. Players are (usually)
independently thinking people who don’t like being told outright what to feel and what to do. Also, avoid
starting the first line of the room description with the word ‘you.’ It’s a weak beginning, and sounds a
little too sloppy.

- Never indicate that a character is travelling in a specific direction in your room descriptions. Few things
but me more than seeing a room that says ‘you follow the road to the north’ or ‘a red brick castle lies
ahead.’ What if I am heading south along that road, or if I have just come from the castle and am now
heading away from it? Remember that it is possible to travel through the area in multiple directions, and
your descriptions should still fit no matter which route a person takes through your area. Likewise, phrases
such as ‘this room is warmer than the previous one’ are to be avoided, since players won’t always have
entered from the same direction.

- Be sure to have a good thesaurus handy when you are writing your room descriptions. Too many builders
develop a small group of words that they like to use, and then they use them over and over and over. Unless
you’re careful, you’ll probably end up using certain words way too often in your writing. Words like ‘dark’
and ‘small’ tend to be too overused. Finding some good synonyms can avoid problems of repetition and can
add an interesting, more literate feel to your rooms.

- When you wish to create a door, you must define it twice, once for each side. In other words, if you
want a door that lies between room A and room B to the east, first you have to define a door for the east
exit in room A. Then, you must define a door for the west exit in room B. The mud won’t automatically
create the door in both directions for you.

- Be sure to use up and down exits in your area wherever they fit. Too many people create flat areas that
could easily be more interesting if they included a few rooms on an upper or lower level.

- Do what you can to insure that the rooms connect to one another in a logical manner. In other words, if
you start a room 1, then go south, then east, then north, then west, you should end up back in room one.
Players should easily be able to map your area with graph paper if they want to. At times, this rule can be
broken if it fits the area, but you had better have a good reason for doing so.

- Make your room descriptions as detailed as possible, but don’t make them too long. If all of your room
descriptions are eight to ten lines or more in length, players will start to ignore what you’ve written. If
you’ve got a lot of information, try putting some of it into extra descriptions.

- Avoid no exit rooms that players must recall from. People hate them and they are a good way to drive
players away from your area.

- Do not describe any mobiles that load into the room in your room descriptions. It looks really odd to see
a room description that says that a giant is guarding the door even after you’ve just killed said giant. Save
descriptions of creatures for the MOBS section.

- ASCII art looks out of place in a room description. If you feel that you must use some, save it for
the extra descriptions.

- Remember that a character can see and hear not only what is in their immediate surroundings, but also
what lies farther away, particularly when they are outside. Don’t be afraid to create a few major landmarks
in your area that can be seen from several different places. It can also be possible to see in to surrounding
areas, particularly if your area lies near a major city.

- Be aware of the flow of the terrain through your area. Deserts should not logically be right next to a
swamp. If you wish to include multiple terrains in your area, be sure that they mix together in a way
that makes sense.

Resets

The RESETS section tells the mud what the state of the area should be whenever the mud starts up or
goes through a repop. In this section, you will specify which mobs load where, what equipment they are
wearing, which doors will be locked, which rooms will have random exits, and other details as well. Most
lines in this section will follow the same basic format, but you’ll be working with many, many numbers.
As such, you’ll need to keep careful track of all of your mnums, onums, and rnums so that things work
out the way you intend.

The mud executes each line of your resets when it first loads. It also checks each line whenever it repops.
During a repop, it may run a particular reset, or may skip over it. I’ll point out which ones may be skipped
as I describe each type of reset below.

The first line of this section must look like ‘#RESETS’ so that the mud knows to begin the resets section.

Each of the following lines will follow the same basic format:

 <reset type> 0 <value1> <value2> <value3> <comment>

The reset type will always be a capital letter, and values 1, 2, and 3 will be numbers. Comments at the end
of the line are optional, but recommended. Comments are generally used to remind yourself (or anyone
else reading your area file) what each reset is supposed to do so that you can easily track down any resets
that might be causing problems.

Below, you’ll find details and examples for each type of reset that you can use. (Note that any 0 listed in
the details for a particular reset will be ignored by the mud, but is still necessary.)

MOB RESETS

M 0 <mnum> <total number in the mud> <rnum> <comment>

The mnum tells the mud which mob to load. The total number tells how many of that particular mob
belong in the mod. At each repop, the mud counts how many of this mob already exist. If the there are as
many or more than the number listed here, the mud will skip this particular reset. Otherwise, it will load
one copy of this mob. The rnum tells the mud which room the mob should load into. Finally, the comment
is your change to leave yourself notes on what this reset line is supposed to do.

EQUIP RESETS

E 0 <onum> 0 <wear location> <comment>

This reset tells the mud to equip a mob with a certain piece of equipment. The onum tells the mud which
particular piece of equipment is to be placed onto a mob. The wear location tells the mud which equipment
slot to load the item to. (See the chart below for the list of equipment slots and there corresponding
numbers.) Again, the comment is where you can leave yourself any pertinent notes.

 WEAR LOCATIONS VALUE
 LIGHT 0
 LEFT FINGER 1
 RIGHT FINGER 2
 NECK (1st slot) 3
 NECK (2nd slot) 4
 BODY 5
 HEAD 6
 LEGS 7
 FEET 8
 HANDS 9
 ARMS 10
 OFFHAND 11
 ABOUT BODY 12
 WAIST 13
 LEFT WRIST 14
 RIGHT WRIST 15
 WIELD 16
 HOLD 17

Note that an equip reset must come just after the mob you wish to equip.

GIVE RESETS

G 0 <onum> 0 0 <comment>

A give reset loads a particular piece of equipment into a mob’s inventory. The onum tells the mud
which item to put among the items that the mob has. The only other detail to worry about on this line
is the comment at the end. Like the equip reset, a give reset must come just after the mob that is to
receive the item.

Equip and give resets are only executed when a mob is actually loaded into the mud. If the preceding mob
does not load for any reason, the mud will skip the G and E resets.

OBJECT RESETS

O 0 <onum> 0 <rnum> <comment>

This type of reset will load an object that will be placed on the ground in a particular room. The onum
tells the mud which object to load, while the rnum tells the mud in which room it should load the object.
The mud will ignore this reset if a copy of the object already exists in the room. Thus, you cannot load
two copies of a particular objects into a room.

PUT RESETS

P 0 <contents onum> 0 <container onum> <comment>

Put resets load a certain item to the interior of a container. The contents onum tells the mud what object to
load. The container onum dictates which container will receive the contents. If the object you designate to
receive the contents is not actually a container, the mud will simply ignore this reset. Also, like an O reset,
the mud will skip this reset if there is already a copy of the contents object inside the container. As such,
two or more copies of the same object cannot load into a single container.

Also, be aware that the mud cannot tell the difference between multiple copies of the same container. This,
if you create one single chest and instruct the mud to load that chest in two different locations, you will not
be able to put items into both chests. Avoid using multiple containers with the same onum.

It doesn’t really matter where in the RESETS section you place your P resets. The only thing you have
to be careful about is that the container in question must load somewhere higher up the list of resets that
the object you wish to place into it.

DOOR RESETS

D 0 <rnum> (direction> <door state> <comment>

A door reset tells the mud what state a particular door should be in whenever the mud repops. The rnum
tells the mud what room this reset will affect. The direction is a number between 0 and 5 that tells the mud
which exit direction you wish to set. Exits directions correspond to the following numbers:

 DIRECTION NUMBER
 NORTH 0
 EAST 1
 SOUTH 2
 WEST 3
 UP 4
 DOWN 5

The door state dictates whether the door should normally be open, closed, or closed and locked. Whenever
the mud repops, the door will return to this default state. Use the following to set the state of the door:

 DOOR STATE NUMBER
 OPEN 0
 CLOSED, UNLOCKED 1
 CLOSED, LOCKED 2

You must set the reset state for both sides of any particular door. Thus, if there is a door that closes off an
exit between rooms A and B, you must create one reset for the door that leads from A to B, and another
reset for the door that leads from B to A.

Also, be aware that if you try and set the door state for an exit that has no door, the mud will crash.

Make sure that any door that you try and set with a door reset has already been defined as a door in line
H of your ROOMS section.

RANDOMIZE RESETS

R 0 <rnum> <highest exit number> 0 <comment>

The randomize reset is used to rearrange the exits in a room to create a random maze. Obviously, the rnum
is the number of the room whose exits you would like to randomize. When the mud rearranges the
exits in a room, it starts with the north exit, and mixes up all the exits up to and including the exit
with the highest number that you designate. (If you need to remember which exits have which numbers,
look back a few paragraphs.) If you have a flat, two dimensional maze, you should set the highest exit
number as ‘3’. This will make the mud rearrange all of the exits between north (0) and west (3). For a
three dimensional maze, set the highest exit number to ‘5’, so the mud will rearrange the exits in every
direction at each repop.

COMMENT LINES

Any line in the RESETS section that begins with an asterict (*) will be ignored by the mud. This means
you can dedicate a line entirely to comments by beginning with an asterict. It is not necessary to have
comment lines, but we highly recommend that you do. Comment lines can be used to group certain resets
together to make this section easier to read and debug, should the need arise.

IMPORTANT - After the last of your resets, type ‘S’ on a line all by itself.

A typical RESETS section might look like the following:

#RESETS
*	room	101
M	0	101	2	101		 load	a	copy	of	mob	101	into	room	101
E	0	101	0	16	 	 mob	101	wields	object	101
E	0	102	0	6	 	 mob	101	wears	object	102	on	head
O	0	103	0	101		 Load	object	103	to	the	floor	of	room	101
P	0	104	0	103		 Put	object	104	into	the	contents	of	object	103
D	0	101	2	2	 	 close	and	lock	the	southern	door	in	room	101
*
*	room	102
R	0	102	3	0	 	 randomize	north,	south,	east,	and	west	exits	in	room	102
M	0	102	2	102		 load	a	copy	of	mob	102	into	room	102
E	0	105	0	17	 	 mob	102	holds	object	105
G	0	106	0	0	 	 put	object	106	in	mob	102’s	inventory
*
*	room	103
M	0	101	2	103		 load	a	copy	of	mob	101	to	room	103
E	0	107	0	8	 	 mob	wears	object	107	on	it’s	feet
G	0	108	0	0	 	 put	object	108	in	mob	101’s	inventory
D	0	103	0	2	 	 close	and	lock	the	northern	door	in	room	103
S

That’s it. Keep in mind, though, that your resets section will probably be a lot longer, but it should still
look basically the same.

Shops

In the shops section, you will designate which of your mobs will be shopkeepers, as well as what items they
will buy, when they will conduct business, and other important information.

Begin this section with the following on its own line: #SHOPS

Each subsequent line will define a particular shopkeeper and must contain the following information:

<mnum> <type0> <type1> <type2> <type3> <type4> <%sells> <%buys> <open> <close>

Mnum tells the mud which particular mob you wish to set as a shopkeeper.

Type0 through type4 determines which types of items a shopkeeper will buy. Use the object type numbers
from TABLE C to define these values. For example, if you want the shopkeeper to buy wands, set one of
these values to 3. If you would like it to buy armor, set one of the values to 9. You chose to have your
shopkeeper buy up to five different types of items. If you do not wish to use all five of these fields, simply
enter a zero (0) for any of these fields you chose not to use.

Be aware that you do not need to tell the mud what types of objects a shopkeeper will buy. It will
automatically sell any item that is in its inventory. Thus, it is possible to create a shopkeeper that will
refuse to buy anything, but will still sell any object that normally loads into its inventory.

%sells and %buys will affect the price that a shopkeeper will offer for of charge for an item. The mud
naturally assigns a monetary value to all items. If you would like the shopkeeper charge this normal value
for anything he sells, set the %sells to 100 (100% of the normal value). If you want to shopkeeper to mark
up prices, set the %sells to a higher value (for example, a %sells of 120 means that the shopkeeper will
mark up all values by 20 per cent). Likewise, a number less than 100 means that the shopkeeper will sell
items at a discount. Naturally, %buys affects the amount of money that a shopkeeper will offer when it
buys an item. If you set %buys to 100, the shopkeeper will pay the full normal value when it buys an item.
If %buys is set to 50, it will only offer half of the objects normal value. Not that you should never, ever
set %sell to a lower number than %buys.

Open and close tell the mud what time mob will start and stop buying and selling items. All times are based
on a 24 hour clock with 0 representing midnight and 12 representing noon. If you wish the shopkeeper to
do business between the hours of 7 AM and 10 PM, you would set the open to 7 and the close to 22.

After the last shopkeeper you wish to define, type a zero (0) all by itself on its own line.

Once everything is put together, your SHOPS section might look like this:

#SHOPS
110	2	10	3	4	0	125	85	10	18
115	5	9	0	0	0	110	65	8	20
0

This would mean that mob 110 buys scrolls, potions, wands, and staves, sells them at a 25% profit, pays
85% of full value for them, and is open between the hours of 10 AM and 6 PM. Mob 115 buy weapons
and armor, sells them for a 10% profit, pays 65% of full value for them, and is open between the hours
of 8 AM and 8 PM.

If you wish to create a shopkeeper that sells pets, define them as normal in this section, but do not set any
object types for it to buy. Then, make sure that this particular shopkeeper loads into a room that has been
set as a pet store in the ROOMS section.

Lastly, be aware that on our mud, any mob that you designate as a shopkeeper cannot be attacked by
players. If you want a certain mob to be killable, do not make it a shopkeeper.

If you don not want to include any shopkeepers in your area, you still must have a SHOPS section. Simply
begin with the opening line (#SHOPS) and follow that with the number zero (0) on a line by itself.

Specials

In the SPECIALS section, the final section of your area format, you can assign certain special attributes
to any of the mobs and objects in your area. You can chose to have certain mobs cast spells during
combat or interact with players in unusual ways, and you can make objects do unusual things to a player
that uses them.

The opening line of this section must be ‘#SPECIALS’ all by itself. Each subsequent will consist of either
a mob special or an object special.

If you want to assign a special function to a mob, the line will follow this format:

 M <mnum> spec_<special type> comment

The mnum is the number of the mob to which you wish to assign the special function. The special type
determines what unusual properties this mob will exhibit. (Note that the underscore (_) after the word
spec is necessary.) As an example:

 M	115	spec_breath_fire

would give mob 115 the ability to breathe fire in combat. A complete list of specials available for mobs
will come later in this section.

For special functions assigned to objects, use the following format for the line:

 O <onum> speco_<special type> comment

The onum tell the mud which object to assign the special function to. Again, the underscore is needed
in each line. A line written as:

 O	120	speco_social

would mean that object 120 will make any character that holds it execute random socials. There will also
be a complete list of object socials later in this section.

It does not matter what order the lines in your SPECIALS section are written in. Although most people
arrange them in the order of mnums and onums, there is no reason that this section must be written
this way.

After the last special you wish to assign, write ‘#$’ on a line all by itself. This will be the last line of
your area file. If you do not wish to assign any of these special function, the you still need to write
‘#SPECIALS’ and ‘#$’ on their own lines. The mud expects there to be a specials section even if it does
not contain anything.

Be aware that mobs and object cannot have more than one special assigned to them. If you try to assign
multiple specials, the mud will ignore all but the last one.

The following specials are available for use with mobs:

spec_align_change

 The mob will change a character’s alignment during a fight.

spec_breath_any

 The mob will be able to use all five of the available breath weapon
 spells during combat.

spec_breath_acid

 The mob can spit acid onto a character during combat.

spec_breath_fire

 The mob can breathe fire as a attack in combat.

spec_breath_frost

 The mob can breathe a cone of frost during a fight.

spec_breath_gas

 The mob can breathe toxic gas as an area attack during combat.

spec_breath_lightning

 The mob can shoot lightning bolts from its mouth during combat.

spec_buddha

 The mob will be affected by both spec_breath_any and spec_cast_cleric.

spec_cast_adept

 The mob will randomly cast armor, bless, cure blindness, cure poison, cure light, and refresh on
 characters of up to level 10.

spec_cast_cleric

 The mob can use blindness, cause serious, earthquake, cause critical, dispel evil, curse, change sex,
 flamestrike, harm, and dispel magic against a player during combat.

spec_cast_judge

 The mob can cast the spell ‘high explosive’ in combat.

spec_cast_mage

 The mob will cast blindness, chill touch, weaken, teleport, color spray, change sex, energy drain,
 fireball, and acid blast during a fight.

spec_cast_undead

 The mob can use curse, weaken, chill touch, blindness, poison, energy drain, harm, and teleport
 while in combat.

spec_executioner

 The mod will push players labeled as killers and thieves out of the room. It will also clean up
 blood stains.

spec_fido

 The mob will eat any corpses that it finds.

spec_grue

 The mob will destroy any light that the character is using or holding in their inventory.

spec_guard

 The mob will attack players labeled as killers and thieves. It will also join an existing fight on the
 side of whichever fighter has the higher alignment.

spec_hate_avian, spec_hate_druid, spec_hate_elf, spec_hate_human, spec_hate_illithid, spec_hate_kender

 The mob will automatically attack any character of the indicated race that it sees.

spec_hate_evil, spec_hate_good, spec_hate_neutral

 The mob fights any character it finds that falls within the given alignment range.

spec_janitor

 The mob picks up any objects that it finds on the ground. It will also clean up blood trails.

spec_kungfu_poison

 The mob can use the ‘poison palm’ technique to poison a character during combat.

spec_love_evil, spec_love_good, spec_love_neutral

 The mob fights any character it finds that does not fall within the given alignment range.

spec_poison

 The mob has a poisonous bit that is can use to poison a character during a fight.

spec_thief

 The mob will attempt to steal gold from any character in the same room.

The following specials are available for use with objects:

speco_airfill

 The object can be used to refill the air in scuba type objects.
 *This special is only to be assigned to no-take objects.

speco_attach

 The object will automatically jump into a character’s inventory and attempt to force the characters
 to wear said object.

speco_burper

 When equipped, the object will cause the character to use the ‘burp’ social at random intervals.

speco_drain_hp

 The object will cause physical damage to any character that uses it as equipment.

speco_drunker

 The object will periodically make any character that uses it drunk.

speco_recycler

 This special is for use with containers. If a character put a trash type item into the container, the
 object will be destroyed and the container will create a small amount of gold in return.
 *This special is only to be assigned to no-take objects.

speco_social

 Any character that uses this object or has it in their inventory will execute random socials.

speco_personalized

 Limits which characters will be able to use the object. See the OBJECTS section for more
 information.

If your area needs some sort of special function to assign to a mob or an object that is not covered above,
it is possible for us to add new specials to the mud. The easiest way to accomplish this is to write a new
special yourself. Of course, this isn’t always an option since not everyone has the programming know-how.
If there is a new special that you absolutely need, but cannot create by yourself, talk to the coders on the
mud. It is possible for us to create new specials for you, but we aware - our coders are very busy people
who are usually tied up with other important business for the mud. The special that you might need would
have to been very, very essential to the mud for us to be able to add it to the to-do list of our coders. It never
hurts to ask if it’s possible though, as long as you ask nicely and are willing to accept rejection.

The ‘#$’ right after the SPECIALS section marks the end of your area file. Once everything is done, all you
have left to do is look for any errors and submit the finished process.

If you would like to see what a full and complete area file looks like, please see the appendix to this file.

Part III
after you’ve finished

the area file

After many long hours of work and frustration, you’ve finally completed your area. Typing the ‘#$’ at the
end of the area file certainly gives you a great sense that you can finally take a break and relax. There
still is a little more work to do, though.

Despite your best efforts, some spelling and grammar mistakes have undoubtedly slipped past you. Look
through your area once again from start to finish. Do not rely on your computer’s spell checker to find
mistakes for you. Dozens of misspellings, if not more, will slip past. Take the time to actually read through
everything line by line. Not only will you find many of your spelling and grammar mistakes, you might
even find some ways to rewrite and improve your descriptions.

Yes, I know that spelling mistakes are not uncommon on the mud, but we want to keep them to a minimum.
If you submit an area with too many blatant spelling and grammar errors, we will send the file back to you
and ask you to clean up the writing yourself. One of the biggest favors that you can do for yourself is to
make sure that all of your writing looks good before you submit the file you have written.

In addition to spell checking your area, you should try to debug the file as well. If you access to a copy of
Merc, you can try to add your area into the collection of areas included with Merc. Running the program
will automatically search the area for any errors and tell you not only if it runs onto any problems, but also
where in the area file it found those problems.

If you don’t have your own copy of Merc, you should still look through the area file to determine if you
have omitted any tildes or zeros. Any missing characters could cause the mud to crash. If you have
no access to Merc yourself, we can run your area through the debugging process ourselves, but that will
probably delay the implementation of your area.

Once you’ve checked and double checked the area file (which should, if you remember, be saved as a text
only file) send a copy to Kiri. (Again, you can find her current e-mail address by profiling her on Barren
Realms.) Then, sit back and wait. Your area will be examined by one or more of the other builders on the
mud. If there are any problems with your area, we’ll let you know what they are and return the area to you
so that you can fix them. Problems may include, but are certainly not limited to: too many mobs, too few
mobs, overpowered objects, poorly connected rooms, sub-standard descriptions, and descriptions that are
repeated to often. If your area is returned to you for any reason, don’t be discouraged. We strive for high
quality areas on the mud and we are committed to helping you write the best areas that you can.

Before long, your area will most likely be accepted, either upon its first submission or after one or more
revisions. At this point, we will work with you to find the best spot for connecting your area with the
rest of the mud. We will do our best to work with you, but be aware that we cannot always honor
your exact wishes.

Soon, your area will be added to the mud, and you and everyone else on the mud can enjoy your handiwork.
It may take a few days before your area is finally added, or it may take a few weeks. Be patient. It’s
worth the wait.

A few disclaimers.

Just because you complete and submit an area does not mean that we are obligated to add it to the mud. We
would love to add everyone’s work to the mud, but we also have certain standards to maintain. Occasionally,
there will be problems with an area that simply cannot be fixed. We cannot guarantee that every area
submitted to us will be added to the mud.

After an area has been added to the mud, it may become necessary for us to make certain changes. Spelling
mistakes may be found, or we may discover that your area if unbalanced for some reason. For the well being
of the mud, we will correct any problems that we find. Assuming that you have provided us with up-to-date
contact info, we will work with you to implement these changes. If we cannot reach you, we will still go
ahead with necessary changes to your area as we see fit.

Once an area is submitted to us, the administration of Barren Realms will have final say over whether an
us added or removed from the mud. Occasionally, it may become necessary to remove an area for any
number of reasons. Once again, if you have provided us with accurate contact info, we will let you know
if your area must be removed.

Now, a few words about the completeness and of this guide. I’ve done my best to cover all possibilities
in area building, but be aware that new code is always being developed for Barren Realms. By the time
you read this, there may be new spells, or new options for mobs and objects. Whenever any significant
changes are made to the mud, we will update this guide to reflect those changes. These changes may take
some time, though. If you know of something that has been added to the mud that you don’t see reflected
in this guide, by all means ask about it.

Lastly we value the what you can bring to us as a builder. Anyone who is interested should talk to us about
any ideas you might have. Questions are welcomed and encouraged. We’re always on the lookout for new
builders and would love the opportunity to add someone to the team.

DIKUMUD	LICENSE:

Copyright	(C)	1990,	1991
All	Rights	Reserved

DikuMud	License

Program	&	Concept	created	by

===
|											Sebastian	Hammer												|		
|								Prss.	Maries	Alle	15,	1								|
|																1908	Frb.	C.											|
|																	DENMARK															|
|		(email	quinn@freja.diku.dk)										|
===
===
|													Michael	Seifert											|
|					Nr.	Soeg.	37C,	1,	doer	3										|
|									1370	Copenhagen	K.												|	
|															DENMARK																	|
|			(email	seifert@freja.diku.dk)							|
===
===
|							Hans	Henrik	St}rfeldt											|
|																Langs}	19														|
|														3500	V{rl|se													|
|														DENMARK																		|
|						email	bombman@freja.diku.dk						|
===
===
|													Tom	Madsen																|
|							R|de	Mellemvej	94B,	64										|
|									2300	Copenhagen	S.												|
|															DENMARK																	|	
|					(email	noop@freja.diku.dk)								|	
===
===
|														Katja	Nyboe														|	
|												Kildeg}rdsvej	2												|	
|													2900	Hellerup													|	
|														31	62	82	84														|	
|																DENMARK																|	
|						(email	katz@freja.diku.dk)							|
===

This	document	contains	the	rules	by	which	you	can	use,	alter	or	publish
parts	of	DikuMud.	DikuMud	has	been	created	by	the	above	five	listed
persons	in	their	spare	time,	at	DIKU	(Computer	Science	Institute	at
Copenhagen	University).	You	are	legally	bound	to	follow	the	rules

described	in	this	document.
==============
*			Rules:			*
==============

				!!	DikuMud	is	NOT	Public	Domain,	shareware,	careware	or	the	like	!!

You	may	under	no	circumstances	make	profit	on	*ANY*	part	of	DikuMud	in			
any	possible	way.	You	may	under	no	circumstances	charge	money	for												

distributing	any	part	of	DikuMud	-	this	includes	the	usual	$5	charge				
for	“sending	the	disk”	or	“just	for	the	disk”	etc.																						

By	breaking	these	rules	you	violate	the	agreement	between	us	and	the			
University,	and	hence	will	be	sued.																																				

You	may	not	remove	any	copyright	notices	from	any	of	the	documents	or		

sources	given	to	you.																																																								
This	license	must	*always*	be	included	“as	is”	if	you	copy	or	give							
away	any	part	of	DikuMud	(which	is	to	be	done	as	described	in	this									

document).																																																															
If	you	publish	*any*	part	of	DikuMud,	we	as	creators	must	appear	in	the			
article,	and	the	article	must	be	clearly	copyrighted	subject	to	this					

license.	Before	publishing	you	must	first	send	us	a	message,	by										
snail-mail	or	e-mail,	and	inform	us	what,	where	and	when	you	are										

publishing	(remember	to	include	your	address,	name	etc.)																	
If	you	wish	to	setup	a	version	of	DikuMud	on	any	computer	system,	you				
must	send	us	a	message	,	by	snail-mail	or	e-mail,	and	inform	us	where				

and	when	you	are	running	the	game.	(remember	to	include																			
your	address,	name	etc.)																																																	

Any	running	version	of	DikuMud	must	include	our	names	in	the	login								
sequence.	Furthermore	the	“credits”	command	shall	always	contain									

our	name,	addresses,	and	a	notice	which	states	we	have	created	DikuMud.				
You	are	allowed	to	alter	DikuMud,	source	and	documentation	as	long	as				

you	do	not	violate	any	of	the	above	stated	rules.																							
Regards,

The	DikuMud	Group

Note:

We	hope	you	will	enjoy	DikuMud,	and	encourage	you	to	send	us	any	reports
on	bugs	(when	you	find	‘it’).	Remember	that	we	are	all	using	our	spare
time	to	write	and	improve	DikuMud,	bugs,	etc.	-	and	changes	will	take
their	time.	We	have	so	far	put	extremely	many	programming	hours	into

this	project.	If	you	make	any	major	improvements	on	DikuMud	we	would	be
happy	to	hear	from	you.	As	you	will	naturally	honor	the	above	rules,	you

will	receive	new	updates	and	improvements	made	to	the	game.

	Subscribe	to	the	barren	realms	newsletter	by	emailing	contacting	Kiri.
For	the	builders	forum,	email	barren@chaos.coredcs.com.

-
-				
|													Barren	Realms:	barren.coredcs.com	8000																		|
-

APPENDIX
sample area file

The following is an example of a complete area file. It is rather small, but it shows all parts of the file
combined together. Use this a a reference as you are working on your area file.

#AREA			{	5	15}	Faustus	Dragon	Egg	Tavern~

#HELPS
-0
tavern~
The	Dragon	Egg	Tavern	is	written	as	a	small	example	area	to	accompany
the	Barren	Realms	builder’s	guide.		Chances	are,	this	area	will	never
actually	be	implemented	anywhere,	so	this	help	file	will	most	likely
never	been	read	on	the	mud.		Nevertheless,	this	shows	you	what	a	help
file	looks	like.
0	$~

#MOBILES
#501
klaus	bartender	tall	man	heavy~
Klaus	the	bartender~
A	tall,	heavyset	man	stands	behind	the	bar,	awaiting	orders.
~
Klaus	stands	here	with	a	jolly	countenance	and	a	gleam	in	his	eye.		He
takes	a	moment	to	wipe	his	hands	on	his	dirty	apron	and	then	turns	to
laugh	at	a	joke	made	by	some	other	patron.		As	he	moves	about	behind	the
bar,	it	is	possible	to	see	the	powerful	muscles	that	hide	beneath	his
portly	body.
~
1|2|4	4|32	750	S
99	0	0	0d0+0	0d0+0
0	0	0	0	1
#502
cook	shabby	short~
a	shabby	cook~
A	short	cook	scurries	about	the	area,	busily	preparing	food.
~
This	short	man	regards	you	with	a	gruff	grunt	as	you	look	at	him,	then
returns	his	attention	to	the	half-prepared	food	before	him.		His	dark	is
pulled	back	into	a	tight	knot	and	he	wears	a	thin,	greasy	apron.
Despite	the	cramped	quarters,	he	moves	about	with	ease.
~
1|2	0	500	S
11	0	0	0d0+0	0d0+0
0	0	0	0	1
#503
patron	hungry	stout	man~
a	hungry	patron~
A	stout	man	is	here,	waiting	to	be	served.
~

Faint	grumbling	sounds	are	audible	from	the	stomach	of	this	portly	man.
He	paces	back	and	forth,	impatiently	looking	around	for	something	to
eat.		He	pauses	for	a	moment	to	wipe	some	sweat	from	beneath	his
thinning	brow.
~
1	0	150	S
5	0	0	0d0+0	0d0+0
0	0	0	0	1
#504
patron	quiet	young	woman~
a	quiet	patron~
A	young	woman	standing	nearby	watches	everyone	around	her.
~
This	woman	gazes	about,	her	face	mostly	covered	by	her	long,	curly	hair.
She	stands	rather	still	and	does	not	draw	much	attention	to	herself.
Her	eyes	dart	over	to	the	bar	for	a	moment,	but	her	face	betrays	no	sign
of	emotion.
~
1	0	150	S
8	0	0	0d0+0	0d0+0
0	0	0	0	2
#505
smell	rancid	rotten	cloud	stink~
a	rancid	smell~
A	rotten	cloud	of	yellowish	stink	permeates	the	room.
~
The	yellowish	cloud	swirls	amorphously	through	the	air,	despite	the	fact
that	no	fresh	air	blows	into	the	room.		When	it	comes	into	contact	with
the	water	on	the	floor,	the	water	starts	to	sizzle	and	bubble	slightly.
This	cloud	moves	about	almost	as	if	it	is	seeking	out	life.
~
1|2|8|32	8|32	-750	S
15	0	0	0d0+0	0d0+0
0	0	0	0	0
#0

#OBJECTS
#501
beef	plate	slices~
a	plate	of	beef~
A	plate	covered	with	slices	of	beef	sits	here.~
~
19	0	1
25	0	0	0
3	0	0
E	beef	plate	slices~
Several	slices	of	beef,	covered	in	a	thick,	juicy	sauce,	lie	atop	a
cracked	clay	plate.		A	rich	aroma	rises	from	the	meat,	tantalizing	those
in	the	vicinity.
~
#502
key	worn	scratched~
a	worn	key~
A	scratched	and	worn	key	lies	here,	discarded.~
~
18	0	1
0	0	0	0
1	0	0
E	key	worn	scratched~
This	key	is	about	three	inches	in	length.		Several	deep	scratches	run
from	one	end	to	the	other.		Despite	these	marks,	the	key	feels	quite
solid	and	sturdy.
~

#503
ale	bottle	brown	liquid~
a	bottle	of	ale~
A	dark	brown	bottle	filled	with	amber	liquid	sits	on	the	floor.~
~
10	1	1
15	28	1	36
2	125	0
E	ale	bottle	brown	liquid~
The	liquid	in	this	bottle	fizzes	with	rolling	effervescence.		A	rich,
heady	aroma	escapes	from	within	and	fills	the	air.
~
#504
cleaver	meat	knife	large~
a	meat	cleaver~
A	large	knife	has	been	stuck	into	the	ground.~
~
5	2|64	1|8192
0	0	0	1
5	0	0
E	cleaver	meat	knife	large~
The	ten-inch	long	blade	of	this	cleaver	has	been	sharpened	to	a	finely
honed	edge.		It	is	capable	of	hewing	easily	through	meat,	shaving	off
paper-thin	slices.
~
A	18	2
A	19	1
#505
tunic	brown	loose	pile	fabric~
a	loose	brown	tunic~
A	pile	of	brown	fabric	has	fallen	in	a	rumpled	heap.~
~
9	0	1|8
0	0	0	0
5	0	0
E	tunic	brown	loose	pile	fabric~
Despite	the	rough	weave	of	the	fabric,	this	tunic	drapes	easily	about
the	body,	making	it	rather	comfortable.
~
A	5	1
A	17	10
#506
boots	muddy	pair~
a	pair	of	muddy	boots~
A	pair	of	boots	coated	in	mud	lies	nearby.~
~
9	0	1|64
0	0	0	0
4	0	0
E	boots	muddy	pair~
These	boots	are	made	with	stout,	thick	soles	designed	to	withstand	a
great	deal	of	wear.		Most	of	the	mud	that	coats	these	boots	is	old	and
dry,	but	a	few	spots	are	still	slick.
~
A	2	1
A	13	10
#507
coatrack	coat	rack	tall~
a	coatrack~
A	tall	coatrack	stands	in	the	corner.~
~
12	0	0
0	0	0	0
25	0	0

E	coatrack	coat	rack	tall~
A	wooden	pole,	slightly	taller	than	the	average	human,	rests	upon	a
sturdy	base.		A	pair	of	tan	cloaks	hang	from	small	hooks	atop	the	rack.
~
#508
stove	iron	cast	black~
a	cast	iron	stove~
A	large	black	stove	is	placed	against	a	wall.~
~
15	0	0
100	1|4	-1	0
200	0	0
E	stove	iron	cast	black~
Drops	of	grease	coat	the	surface	of	this	stove,	attesting	to	its
frequent	use.		The	hinges	on	its	door	look	oiled	and	well	maintained,
though.
~
#509
pork	roast	roasted	piece~
a	roast	pork~
A	roasted	piece	of	pork	sits	here	with	steam	rising	from	it.~
~
26	2|64	1
20	19	74	36
2	250	0
E	pork	roast	roasted	piece~
A	light	glaze	glistens	on	the	surface	of	this	juicy	meat.		It	has	a	rich
golden	color	and	smells	delicious.
~
#510
toilet	old	broken	cracked~
an	old,	broken	toilet~
A	cracked	toilet	stands	in	the	back	corner.~
~
15	0	0
150	0	-1	0
1000	0	0
E	toilet	old	broken	cracked~
This	toilet	is	badly	stained,	and	there	appears	to	be	something	growing
on	one	side.		Its	interior	has	long	since	dried	out	and	currently	stands
empty.
~
#0

#ROOMS
#501
On	a	Muddy	City	Street~
The	dirt	roads	of	the	city	have	become	slick	with	mud	following	a	recent
rainstorm.		This	particular	stretch	is	especially	messy,	as	the	mud	has
been	churned	up	by	passing	pedestrians	and	horses.		On	the	western	edge
of	the	street,	a	few	wooden	steps	lead	up	to	a	one-story	building.		A
crude,	but	welcoming	sign	hangs	outside	of	the	door	to	this	building,
offering	refuge	from	the	muck	and	dirt	of	the	streets.
~
0	4	1
D3
A	heavy	wooden	door	provides	access	to	a	nearby	building.
~
door	wooden~
1	-1	502
E	sign	crude~
The	sign	hangs	from	a	pair	of	rusty	iron	chains	that	creak	softly	as	the
sign	sways	in	the	breeze.		A	set	of	letters	carved	into	the	sign	reads

“Welcome	travelers	to	the	Dragon	Egg	Tavern.”		Next	to	these	letters,
someone	has	painted	a	colorful	egg	from	which	protrudes	the	brightly
painted	head	of	a	dragon.
~
S
#502
The	Common	Room	of	the	Tavern~
The	sounds	of	glasses	clinking	together,	of	forks	scraping	against
plates,	and	of	jovial	conversation	fill	the	air.		Warm	air	fills	the	air
of	this	tavern,	creating	a	comfortable,	welcoming	atmosphere.		To	the
east,	a	thick	wooden	door	leads	out	to	the	neighboring	street.		Inside
the	tavern,	there	is	a	bar	to	the	west	and	a	few	tables	that	sit	to	the
north.		Underfoot,	a	few	mud	streaks	mark	the	wooden	floor	panels.
~
0	8	0
D0
A	few	tables	sit	in	the	corner	to	the	north.
~
~
0	-1	505
D1
A	wooden	door,	marked	by	a	few	scratches,	is	set	into	the	east	wall.
~
door	wooden	thick~
1	-1	501
D3
A	bar	stands	against	the	western	wall	of	the	tavern.
~
~
0	-1	503
E	floor	panel	panels	mud	streak	streaks~
Much	of	the	mud	on	the	floor	has	been	tracked	in	from	the	street.		Boot
prints,	some	still	slick	with	wet	mud,	track	from	the	door	and	lead	both
to	the	north	and	to	the	west.
~
S
#503
In	Front	of	a	Tall	Bar~
Several	mugs	of	ale,	some	dented,	others	overflowing	with	froth,	sit
atop	the	nearby	oak	bar.		Large	barrels	sit	behind	the	bar	against	the
back	wall	of	the	tavern.		A	shelf	that	stands	above	these	barrels	holds
a	small	collection	of	cheap	wine	bottles.		The	air	in	this	corner	of	the
tavern	holds	a	mixture	of	alcohol	fumes	and	roasted	meat	aromas.		A	pair
of	swinging	doors	to	the	south	leads	into	a	bustling	kitchen,	the	source
of	these	cooking	smells.
~
0	8	0
D0
A	few	tables	have	been	set	up	in	a	corner	to	the	north.
~
~
0	-1	506
D1
East	of	here	is	the	entrance	to	the	tavern.
~
~
0	-1	502
D2
The	swinging	doors	sway	gently	to	and	fro	on	their	hinges.
~
door	doors	swinging~
1	-1	504
E	barrel	barrels~
The	barrels	behind	the	bar	are	three	to	four	feet	in	diameter	each.

Amber	drop	of	ale	slowly	drip	from	the	poorly	closed	tap	of	the	largest
of	these	barrels.
~
E	shelf	wine	bottle	bottles~
Many	of	these	bottles	are	covered	in	a	layer	of	gritty	dust.		Only	two
of	the	bottles	appear	to	have	beet	touched	in	the	past	year.		A	close
look	reveals	cobwebs	clinging	to	a	few	bottles.
~
S
#504
A	Cramped	Kitchen~
This	room,	no	more	than	a	scant	few	square	feet,	is	packed	with	cooking
implements.		A	cast	iron	stove	takes	up	much	of	the	space	against	the
southern	wall,	while	the	other	walls	are	occupied	by	tables	covered	with
pots,	pans,	and	dishes.		One	of	the	tables	also	holds	a	few	chunks	of
bread	and	various	slices	of	meat.		The	single	small	window	set	high
into	the	west	wall	does	little	to	provide	ventilation,	but	some	fresh
air	does	filter	in	through	the	swinging	doors	to	the	east.
~
0	8	0
D0
A	pair	of	swinging	doors	leads	to	the	heart	of	the	tavern.
~
pair	doors	swinging	door~
1	-1	503
E	bread	chunk	chunks~
This	bread	is	heavy	and	has	quite	a	thick	crust,	but	it	looks	fresh	and
filling.		A	freshly	baked	aroma	rises	from	the	bread	to	mingle	with	the
aromas	in	the	room.
~
E	meat	slice	slices~
Warm,	juicy	drippings	seep	from	the	surface	of	the	meat,	puddling	in	a
few	spots	on	the	table	top.		The	aroma	of	this	deep-brown,	well	roasted
meat	is	positively	mouth-watering.
~
S
#505
Inside	the	Tavern~
Candles	that	sit	atop	the	tables	in	this	corner	cast	in	dim	light	upon
the	surroundings.		A	few	patrons	sit	around	two	of	the	tables,	engaged
in	a	deep	conversation.		The	wooden	floorboards	are	strewn	with	bits	of
food,	and	spilled	drinks	have	stained	numerous	spots.		After	a	moment,
the	conversation	grows	louder	and	more	urgent.		A	large	painting	hangs
upon	the	northern	wall,	taking	up	most	of	the	available	space.
~
0	8	0
D2
To	the	south	lies	the	entrance	of	the	tavern.
~
~
0	-1	502
D3
A	dim	corner	of	the	tavern	sits	nearby.
~
~
0	-1	506
E	patron	patrons~
The	patrons	are	made	up	of	a	mixture	of	adventuring	types	and	city
dwellers.		After	a	moment,	the	voices	of	some	of	these	patrons	rise	to	a
shout.		The	yell	is	accompanied	by	the	sharp	crash	of	breaking	glass.
Quickly,	though,	the	atmosphere	calms	down	and	returns	to	normal.
~
E	painting~
This	rough	paint	sketch	depicts	a	brightly	speckled	egg	sitting	in	a

straw	nest.		The	egg	is	cracked	open	on	one	side,	and	the	scaly	head	of
an	infant	dragon	pokes	tentatively	through	the	opening.
~
S
#506
The	Back	of	the	Tavern~
A	few	unoccupied	tables	have	been	placed	about	randomly	in	this	corner
of	the	tavern.		The	patrons	and	employees	of	the	tavern	seem	to	shun
this	area.		Periodically	one	wanders	by,	but	leaves	quickly	in	an
uncomfortable	silence.		The	dark	wooden	floorboards	have	not	been	swept
in	quite	some	time.		One	of	the	tables	partially	blocks	a	door	in	the
northern	wall	with	a	small	paper	sign	hanging	from	it.		An	unpleasant
odor	seeps	in	from	the	direction	of	this	door.
~
0	8	0
D0
This	thick	door	is	partially	blocked	by	one	of	the	tables.
~
door	thick~
1	502	507
D1
Several	patrons	sit	at	the	tables	to	the	east.
~
~
0	-1	505
D2
A	bar,	offering	several	drinks,	stands	nearby.
~
~
0	-1	503
E	sign	paper~
Someone	has	nailed	a	piece	of	paper	to	the	door.		In	flowing	script,	it
says	that	“This	room	has	been	closed	by	order	of	the	city.”		Underneath
this	writing,	a	shakier	handwritten	script	reads	“See	the	bartender	if
you	really	need	to	get	in.		Enter	at	your	own	risk.”
~
S
#507
A	Filthy	Restroom~
This	small,	cramped	chamber	had	probably	once	been	used	as	a	restroom,
but	untold	neglect	has	transformed	it	into	something	unspeakable.		An
inch	of	brackish,	foul-smelling	water	covers	the	floor,	staining	the
bottoms	of	each	wall.		The	remnants	of	a	wooden	stall,	now	smashed	and
broken,	rest	against	the	northern	and	western	walls.		An	awful	odor
fills	the	small	room.		A	door	in	the	southern	wall	offers	a	chance	to
escape	from	here.
~
0	1|8|512|8192	0
D2
This	door	offers	the	only	route	out	of	here.
~
door~
1	502	506
E	water~
An	unidentifiable	oily	substance	floats	on	the	surface	of	the	water.
Its	dull,	yellowish	color	contrasts	starkly	with	the	thick	brown	tint	of
the	rest	of	the	water.
~
S
#0

#RESETS
*	501

D	0	501	3	1	 	 door	resets	closed,	unlocked
*
*	502
D	0	502	1	1	 	 door	resets	closed,	unlocked
M	0	503	2	502		 load	hungry	patron
E	0	505	0	5	 	 hungry	patron	wears	tunic
O	0	507	0	502		 load	coatrack
*
*	503
M	0	501	1	503		 load	bartender
G	0	501	0	0	 	 beef	to	bartender’s	inventory
G	0	502	0	0	 	 key	to	bartender’s	inventory
G	0	503	0	0	 	 ale	to	bartender’s	inventory
*
*	504
M	0	502	1	504		 load	cook
E	0	504	0	16	 	 cook	wields	cleaver
O	0	508	0	504		 load	stove
P	0	509	0	508		 put	pork	in	stove
*
*	505
M	0	503	2	505		 load	hungry	patron
E	0	505	0	5	 	 hungry	patron	wears	tunic
M	0	504	1	505		 load	quiet	patron
E	0	505	0	5	 	 quiet	patron	wears	tunic
E	0	506	0	8	 	 quiet	patron	wears	boots
*
*	506
D	0	506	0	2	 	 door	resets	closed,	locked
*
*	507
D	2	507	2	2	 	 door	resets	closed,	locked
M	0	505	1	507		 load	smell
O	0	510	0	507		 load	toilet
S

#SHOPS
501	19	26	10	0	0	110	85	8	23
0

#SPECIALS
M	501	spec_janitor	 	 bartender
M	504	spec_thief	 	 quiet	patron
O	510	speco_recylcer	 toilet
S

#$

